作物学报 ›› 2023, Vol. 49 ›› Issue (11): 2991-3006.doi: 10.3724/SP.J.1006.2023.34027
CHEN Wu-Jun(), LIU Jiang-Dong, JIANG Kai-Xuan, WANG You-Ping, JIANG Jin-Jin()
摘要:
植物特异的KNOTTED-LIKE HOMEOBOX (KNOX)蛋白属于转录调控因子家族, 该家族在植物生长发育过程和各种胁迫应答中发挥着重要的作用。KNOX蛋白中存在4个保守的结构域: TALE (three amino acid loop extension)类型的HD (homeodomain)、ELK结构域, 以及2个亚结构域KNOX1和KNOX2。目前, 甘蓝型油菜的BnKNOX基因家族还未有系统的研究报道。本研究通过生物信息学分析鉴定获得甘蓝型油菜的36个BnKNOX家族成员。通过序列比对和系统发育树分析, 将其分为3个亚家族(I、II和M类)。进化分析表明, 全基因组复制(whole genome duplication, WGD)和片段复制(segmental duplication)是BnKNOX基因家族扩张的主要动力。基于甘蓝型油菜不同发育时期组织/器官的RNA-seq分析发现, 该基因家族的BnKNAT25/26/29/30在胚乳和种子发育过程中特异表达, 而BnKNAT31/32/34在成熟种子中高表达。通过BnKNOX家族的顺式作用元件分析和非生物胁迫条件下的表达模式分析, 本文鉴定获得17个响应干旱和渗透胁迫的BnKNOX成员。
[1] |
Bürglin T R. Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res, 1997, 25: 4173-4180.
doi: 10.1093/nar/25.21.4173 pmid: 9336443 |
[2] |
Mukherjee K, Bürglin T R. Comprehensive analysis of animal TALE homeobox genes: new conserved motifs and cases of accelerated evolution. J Mol Evol, 2007, 65: 137-153.
pmid: 17665086 |
[3] |
Mukherjee K, Brocchieri L, Bürglin T R. A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol, 2009, 26: 2775-2794.
doi: 10.1093/molbev/msp201 pmid: 19734295 |
[4] |
Vollbrecht E, Veit B, Sinha N, Hake S. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature, 1991, 350: 241-243.
doi: 10.1038/350241a0 |
[5] |
Gao J, Yang X, Zhao W, Lang T, Samuelsson T. Evolution, diversification, and expression of KNOX proteins in plants. Front Plant Sci, 2015, 6: 882.
doi: 10.3389/fpls.2015.00882 pmid: 26557129 |
[6] |
Sakamoto T, Nishimura A, Tamaoki M, Kuba M, Tanaka H, Iwahori S, Matsuoka M. The conserved KNOX domain mediates specificity of tobacco KNOTTED1-type homeodomain proteins. Plant Cell, 1999, 11: 1419-1432.
pmid: 10449577 |
[7] |
Nagasaki H, Sakamoto T, Sato Y, Matsuoka M. Functional analysis of the conserved domains of a rice KNOX homeodomain protein, OSH15. Plant Cell, 2001, 13: 2085-2098.
pmid: 11549765 |
[8] |
Scofield S, Murray J A. KNOX gene function in plant stem cell niches. Plant Mol Biol, 2006, 60: 929-946.
doi: 10.1007/s11103-005-4478-y pmid: 16724262 |
[9] |
Kerstetter R, Vollbrecht E, Lowe B, Veit B, Yamaguchi J, Hake S. Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell, 1994, 6: 1877-1887.
doi: 10.1105/tpc.6.12.1877 pmid: 7866030 |
[10] |
Furumizu C, Alvarez J P, Sakakibara K, Bowman J L. Antagonistic roles for KNOX1 and KNOX2 genes in patterning the land plant body plan following an ancient gene duplication. PLoS Genet, 2015, 11: e1004980.
doi: 10.1371/journal.pgen.1004980 |
[11] |
Magnani E, Hake S. KNOX lost the OX: the Arabidopsis KNATM gene defines a novel class of KNOX transcriptional regulators missing the homeodomain. Plant Cell, 2008, 20: 875-887.
doi: 10.1105/tpc.108.058495 pmid: 18398054 |
[12] |
Bueno N, Alvarez J M, Ordás R J. Characterization of the KNOTTED1-LIKE HOMEOBOX (KNOX) gene family in Pinus pinaster Ait. Plant Sci, 2020, 301: 110691.
doi: 10.1016/j.plantsci.2020.110691 |
[13] |
Clark S E, Jacobsen S E, Levin J Z, Meyerowitz E M. The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development, 1996, 122: 1567-1575.
doi: 10.1242/dev.122.5.1567 pmid: 8625843 |
[14] |
Chuck G, Lincoln C, Hake S. KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell, 1996, 8: 1277-1289.
doi: 10.1105/tpc.8.8.1277 pmid: 8776897 |
[15] |
Endrizzi K, Moussian B, Haecker A, Levin J Z, Laux T. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J, 1996, 10: 967-979.
doi: 10.1046/j.1365-313x.1996.10060967.x pmid: 9011081 |
[16] |
Long J A, Moan E I, Medford J I, Barton M K. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature, 1996, 379: 66-69.
doi: 10.1038/379066a0 |
[17] |
Rupp H M, Frank M, Werner T, Strnad M, Schmülling T. Increased steady state mRNA levels of the STM and KNAT1 homeobox genes in cytokinin overproducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem. Plant J, 1999, 18: 557-563.
pmid: 10417706 |
[18] |
Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol, 2005, 15: 1560-1565.
doi: 10.1016/j.cub.2005.07.023 pmid: 16139211 |
[19] |
Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol, 2005, 15: 1566-1571.
doi: 10.1016/j.cub.2005.07.060 |
[20] |
Scofield S, Dewitte W, Murray J A. The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis. Plant J, 2007, 50: 767-781.
pmid: 17461793 |
[21] |
Scofield S, Dewitte W, Murray J A. A model for Arabidopsis class-1 KNOX gene function. Plant Signal Behav, 2008, 3: 257-259.
doi: 10.4161/psb.3.4.5194 pmid: 19704647 |
[22] |
Scofield S, Dewitte W, Murray J A. STM sustains stem cell function in the Arabidopsis shoot apical meristem and controls KNOX gene expression independently of the transcriptional repressor AS1. Plant Signal Behav, 2014, 9: e28934.
doi: 10.4161/psb.28934 |
[23] |
Belles-Boix E, Hamant O, Witiak S M, Morin H, Traas J, Pautot V. KNAT6: an Arabidopsis homeobox gene involved in meristem activity and organ separation. Plant Cell, 2006, 18: 1900-1907.
doi: 10.1105/tpc.106.041988 pmid: 16798887 |
[24] |
Hareven D, Gutfinger T, Parnis A, Eshed Y, Lifschitz E. The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell, 1996, 84: 735-744.
doi: 10.1016/s0092-8674(00)81051-x pmid: 8625411 |
[25] |
Bharathan G, Goliber T E, Moore C, Kessler S, Pham T, Sinha N R. Homologies in leaf form inferred from KNOXI gene expression during development. Science, 2002, 296: 1858-1860.
doi: 10.1126/science.1070343 pmid: 12052958 |
[26] |
Hay A, Tsiantis M. The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nat Genet, 2006, 38: 942-947.
doi: 10.1038/ng1835 |
[27] |
Nikolov L A, Tsiantis M. Interspecies gene transfer as a method for understanding the genetic basis for evolutionary change: progress, pitfalls, and prospects. Front Plant Sci, 2015, 6: 1135.
doi: 10.3389/fpls.2015.01135 pmid: 26734038 |
[28] | Rast-Somssich M I, Broholm S, Jenkins H, Canales C, Vlad D, Kwantes M, Bilsborough G, Dello Ioio R, Ewing R M, Laufs P, Huijser P, Ohno C, Heisler M G, Hay A, Tsiantis M. Alternate wiring of a KNOXI genetic network underlies differences in leaf development of A. thaliana and C. hirsuta. Genes Dev, 2015, 29: 2391-2404. |
[29] |
Das Gupta M, Tsiantis M. Gene networks and the evolution of plant morphology. Curr Opin Plant Biol, 2018, 45: 82-87.
doi: S1369-5266(18)30004-9 pmid: 29885565 |
[30] |
Shu Y, Tao Y, Wang S, Huang L, Yu X, Wang Z, Chen M, Gu W, Ma H. GmSBH1, a homeobox transcription factor gene, relates to growth and development and involves in response to high temperature and humidity stress in soybean. Plant Cell Rep, 2015, 34: 1927-1937.
doi: 10.1007/s00299-015-1840-7 pmid: 26205508 |
[31] |
Tao Y, Chen M, Shu Y, Zhu Y, Wang S, Huang L, Yu X, Wang Z, Qian P, Gu W, Ma H. Identification and functional characterization of a novel BEL1-LIKE homeobox transcription factor GmBLH4 in soybean. Plant Cell Tissue Organ Cult, 2018, 134: 331-344.
doi: 10.1007/s11240-018-1419-4 |
[32] |
Song X, Zhao Y, Wang J, Lu M Z. The transcription factor KNAT2/6b mediates changes in plant architecture in response to drought via down-regulating GA20ox1 in Populus alba × P. glandulosa. J Exp Bot, 2021, 72: 5625-5637.
doi: 10.1093/jxb/erab201 |
[33] | 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617. |
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617 (in Chinese with English abstract). | |
[34] |
Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345: 950-953.
doi: 10.1126/science.1253435 pmid: 25146293 |
[35] |
Cheng F, Wu J, Wang X. Genome triplication drove the diversification of Brassica plants. Hortic Res, 2014, 1: 14024.
doi: 10.1038/hortres.2014.24 |
[36] |
Akter A, Itabashi E, Kakizaki T, Okazaki K, Dennis E S, Fujimoto R. Genome triplication leads to transcriptional divergence of FLOWERING LOCUS C genes during vernalization in the genus Brassica. Front Plant Sci, 2021, 11: 619417.
doi: 10.3389/fpls.2020.619417 |
[37] | El-Gebali S, Mistry J, Bateman A, Eddy S R, Luciani A, Potter S C, Qureshi M, Richardson L J, Salazar G A, Smart A, Sonnhammer E L L, Hirsh L, Paladin L, Piovesan D, Tosatto S C E, Finn R D. The Pfam protein families database in 2019. Nucleic Acids Res, 2019, 47: D427-D432. |
[38] |
Potter S C, Luciani A, Eddy S R, Park Y, Lopez R, Finn R D. HMMER web server: 2018 update. Nucleic Acids Res, 2018, 46: W200-W204.
doi: 10.1093/nar/gky448 |
[39] |
Marchler-Bauer A, Bryant S H. CD-search: protein domain annotations on the fly. Nucleic Acids Res, 2004, 32: W327-W331.
doi: 10.1093/nar/gkh454 pmid: 15215404 |
[40] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[41] |
Xu G, Guo C, Shan H, Kong H. Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci USA, 2012, 109: 1187-1192.
doi: 10.1073/pnas.1109047109 pmid: 22232673 |
[42] |
Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290: 1151-1155.
doi: 10.1126/science.290.5494.1151 pmid: 11073452 |
[43] |
Kong W, Ding L, Cheng J, Wang B. Identification and expression analysis of genes with pathogen-inducible cis-regulatory elements in the promoter regions in Oryza sativa. Rice, 2018, 11: 52.
doi: 10.1186/s12284-018-0243-0 |
[44] | Ho C L, Geisler M. Genome-wide computational identification of biologically significant cis-regulatory elements and associated transcription factors from rice. Plants (Basel), 2019, 8: 441. |
[45] | Meng L, Liu X, He C, Xu B, Li Y, Hu Y. Functional divergence and adaptive selection of KNOX gene family in plants. Open Life Sci, 2020, 15: 346-363. |
[46] |
Zhu Y, Wu N, Song W, Yin G, Qin Y, Yan Y, Hu Y. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies. BMC Plant Biol, 2014, 14: 93.
doi: 10.1186/1471-2229-14-93 pmid: 24720629 |
[47] |
Sun R, Qin T, Wall S B, Wang Y, Guo X, Sun J, Liu Y, Wang Q, Zhang B. Genome-wide identification of KNOX transcription factors in cotton and the role of GhKNOX4-A and GhKNOX22-D in response to salt and drought stress. Int J Biol Macromol, 2023, 226: 1248-1260.
doi: 10.1016/j.ijbiomac.2022.11.238 |
[48] |
Han Y, Zhang L, Yan L, Xiong X, Wang W, Zhang X H, Min D H. Genome-wide analysis of TALE superfamily in Triticum aestivum reveals TaKNOX11-A is involved in abiotic stress response. BMC Genomics, 2022, 23: 89.
doi: 10.1186/s12864-022-08324-y |
[1] | 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343. |
[2] | 左春阳, 李亚玮, 李焱龙, 金双侠, 朱龙付, 张献龙, 闵玲. 陆地棉漆酶基因家族成员表达模式分析[J]. 作物学报, 2023, 49(9): 2344-2361. |
[3] | 文利超, 熊涛, 邓智超, 刘涛, 郭存, 李伟, 郭永峰. 烟草转录因子NtNAC080在非生物胁迫下的表达分析及功能鉴定[J]. 作物学报, 2023, 49(8): 2171-2182. |
[4] | 魏正欣, 刘昌燕, 陈宏伟, 李莉, 孙龙清, 韩雪松, 焦春海, 沙爱华. 基于干旱胁迫转录组信息的蚕豆ASPAT基因家族分析[J]. 作物学报, 2023, 49(7): 1871-1881. |
[5] | 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842. |
[6] | 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531. |
[7] | 杨一丹, 何督, 刘静, 张岩, 陈飞志, 巫燕飞, 杜雪竹. 寄主诱导的基因沉默干扰核盘菌致病基因OAH在甘蓝型油菜抗菌核病中的应用[J]. 作物学报, 2023, 49(6): 1542-1550. |
[8] | 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725. |
[9] | 马春敏, 李维希, 李芳军, 田晓莉, 李召虎. 陆地棉硝酸盐转运体NRT基因家族鉴定及表达分析[J]. 作物学报, 2023, 49(6): 1496-1517. |
[10] | 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210. |
[11] | 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析[J]. 作物学报, 2023, 49(5): 1211-1221. |
[12] | 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954. |
[13] | 陈晓汉, 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. BnABCI8影响甘蓝型油菜叶绿体发育[J]. 作物学报, 2023, 49(4): 893-905. |
[14] | 周宾寒, 杨竹, 王书平, 方正武, 胡赞民, 徐兆师, 张迎新. 小麦幼苗活性LTR反转录转座子筛选及其对非生物胁迫的响应[J]. 作物学报, 2023, 49(4): 966-977. |
[15] | 徐子寅, 于晓玲, 邹良平, 赵平娟, 李文彬, 耿梦婷, 阮孟斌. 木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选[J]. 作物学报, 2023, 49(4): 955-965. |
|