欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (11): 2991-3006.doi: 10.3724/SP.J.1006.2023.34027

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜BnKNOX基因家族的鉴定与分析

陈吴钧(), 刘江栋, 蒋凯旋, 王幼平, 蒋金金()   

  1. 扬州大学生物科学与技术学院, 江苏扬州 225009
  • 收稿日期:2023-02-10 接受日期:2023-04-17 出版日期:2023-11-12 网络出版日期:2023-04-24
  • 通讯作者: 蒋金金, E-mail: jjjiang@yzu.edu.cn
  • 作者简介:E-mail: chenwujun0921@163.com
  • 基金资助:
    国家自然科学基金项目(32272055);国家自然科学基金项目(31972963);江苏省研究生实践创新计划项目(SJCX21_1602);江苏省“青蓝工程”项目资助。

Identification and analysis of BnKNOX gene family in Brassica napus

CHEN Wu-Jun(), LIU Jiang-Dong, JIANG Kai-Xuan, WANG You-Ping, JIANG Jin-Jin()   

  1. College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2023-02-10 Accepted:2023-04-17 Published:2023-11-12 Published online:2023-04-24
  • Supported by:
    National Natural Science Foundation of China(32272055);National Natural Science Foundation of China(31972963);Graduate Training Program for Innovation and Entrepreneurship(SJCX21_1602);Qinglan Project of Jiangsu Province.

摘要:

植物特异的KNOTTED-LIKE HOMEOBOX (KNOX)蛋白属于转录调控因子家族, 该家族在植物生长发育过程和各种胁迫应答中发挥着重要的作用。KNOX蛋白中存在4个保守的结构域: TALE (three amino acid loop extension)类型的HD (homeodomain)、ELK结构域, 以及2个亚结构域KNOX1和KNOX2。目前, 甘蓝型油菜的BnKNOX基因家族还未有系统的研究报道。本研究通过生物信息学分析鉴定获得甘蓝型油菜的36个BnKNOX家族成员。通过序列比对和系统发育树分析, 将其分为3个亚家族(I、II和M类)。进化分析表明, 全基因组复制(whole genome duplication, WGD)和片段复制(segmental duplication)是BnKNOX基因家族扩张的主要动力。基于甘蓝型油菜不同发育时期组织/器官的RNA-seq分析发现, 该基因家族的BnKNAT25/26/29/30在胚乳和种子发育过程中特异表达, 而BnKNAT31/32/34在成熟种子中高表达。通过BnKNOX家族的顺式作用元件分析和非生物胁迫条件下的表达模式分析, 本文鉴定获得17个响应干旱和渗透胁迫的BnKNOX成员。

关键词: 甘蓝型油菜, KNOX, 基因家族, 表达模式, 非生物胁迫

Abstract:

The plant specific KNOTTED-LIKE HOMEOBOX (KNOX) protein is a transcription factor family that plays an important role in plant growth and development, as well as responses to various stresses. KNOX proteins contain four conserved domains [a three amino acid loop extension (TALE) type homeodomain (HD), ELK domain, and two subdomains (KNOX1 and KNOX2)]. At present, the comprehensive study of BnKNOX genes in Brassica napus has not been reported yet. In this study, 36 BnKNOX family members were identified in B. napus genome via bioinformatic analyses, which were classified into three sub-families (I, II, and M-type) based on sequence alignment and phylogenetic analyses. Evolutionary analysis showed that the whole genome duplication (WGD) and segmental duplication were the main driving forces for the expansion of BnKNOX gene family. Based on the RNA-seq data of developing tissues and organs of B. napus, BnKNAT25/26/29/30 were specifically expressed in endosperm and developing seeds, while BnKNAT31/32/34 were highly expressed in mature seeds. We analyzed the cis-acting elements and expression pattern of BnKNOXs under various abiotic stresses, and identified 17 BnKNOX members that might be involved in drought and osmotic stress responses.

Key words: Brassica napus, KNOX, gene family, expression pattern, abiotic stress

表1

本研究中用到的qPCR引物"

基因名称
Gene name
正向引物序列
Forward primer sequence (5'-3')
反向引物序列
Reverse primer sequence (5'-3')
BnKNAT1 AGCCATCCACAATACTCAAGAA CGCCGTAATTTTATCAACCACT
BnKNAT2 AGATTAGCATGTTGTGTCAGGA ATCCACTGTACTTCTTCAGCAA
BnKNAT3 ACCTGAGGTGGTCGATAAAATT AAGAAACGACCCACATGAATTG
BnKNAT4 CGAAAATCGCTTCTCATCCTTT CGTTTCGATCTTGTTCAGGAAA
BnKNAT5 TTCTTCGGAGAGTCTTATGTCG GAATCTCTTCCAACACATACGC
BnKNAT11 CTCTCATCCACTATACGAGCAG AGTGGTCAAGCTCCTTATCATC
BnKNAT12 GTGACGCCATGGAAAACATTAC CTGCTCGTATAGTGGATGAGAG
BnKNAT13 CACTATACGAACGGCTTTTGTC GTCCATAGTAGAGTACTTGGCC
BnKNAT18 GATGGAATGTACGGCTTTCATC AGTCGGAAGGAAACATCAGATT
BnKNAT19 GAAAGCTACCAAGAGAAGCAAG CAAAAGGCATATTCTCGGACTG
BnKNAT20 CCTTCTGATTACCAAACCTTGC TACAAAGGATGACAAGCGATCT
BnKNAT22 GTCTCTCTCGGTATCATCAAGG CCTTGCGAGATCCGACTTATAT
BnKNAT23 ATGTGACTACTCAGATAAGCCG GGATACGAAGGATGACAAGCTA
BnKNAT24 TGACACAATGACAATGGAGGTA ATCTTCGCATATTTGTTTCCCG
BnKNAT25 TACCATGTGCGAGCAATTATTG GCTGTTCTTTGAAGCTACACAA
BnKNAT33 TAAGGGAGTTGAAGGAAGCAAT TAGCACCGAATATAGCTGTCAG
BnSTM2 GTAGTAATGGACGCAACACATC GTGCAACGTTCCTAAGTATTCC

图1

甘蓝型油菜BnKNOX蛋白结构域的分布和组成 A: BnKNOX蛋白结构示意图; B: KNOX1结构域; C: KNOX2结构域; D: ELK结构域; E: HD结构域。"

表2

甘蓝型油菜BnKNOX蛋白家族的基本信息"

基因号
Gene ID
基因名
Gene name
拟南芥号
Arabidopsis thaliana locus
蛋白长度
Protein length (AA)
分子量
Molecular weight (kD)
等电点Isoelectric point (pI) 亚细胞定位
Localization
BnaA03g23610D BnKNAT1 AT4G08150.1 402 46.36 5.82 细胞核Nucleus
BnaC03g28030D BnKNAT2 AT4G08150.1 193 23.07 7.55 细胞核Nucleus
BnaCnng59830D BnKNAT3 AT4G08150.1 349 40.19 5.89 细胞核Nucleus
BnaA02g14950D BnKNAT4 AT1G70510.1 327 36.94 4.81 细胞核Nucleus
BnaC02g19900D BnKNAT5 AT1G70510.1 327 36.90 4.80 细胞核Nucleus
BnaA02g32110D BnKNAT6 AT5G25220.1 420 46.29 5.40 细胞核Nucleus
BnaA06g27560D BnKNAT7 AT5G25220.1 299 33.43 5.82 细胞核Nucleus
BnaC02g40790D BnKNAT8 AT5G25220.1 404 44.84 5.44 细胞核Nucleus
BnaC07g29530D BnKNAT9 AT5G25220.1 444 48.91 5.11 细胞核Nucleus
BnaA02g00810D BnKNAT10 AT5G11060.1 393 44.28 5.65 细胞核Nucleus
BnaA03g03190D BnKNAT11 AT5G11060.1 386 43.15 5.67 细胞核Nucleus
BnaC03g04580D BnKNAT12 AT5G11060.1 302 33.77 5.99 细胞核Nucleus
BnaCnng20070D BnKNAT13 AT5G11060.1 393 44.23 5.62 细胞核Nucleus
BnaA01g04870D BnKNAT14 AT4G32040.1 374 41.91 5.56 细胞核Nucleus
BnaA03g51900D BnKNAT15 AT4G32040.1 382 43.18 5.48 细胞核Nucleus
BnaC01g06410D BnKNAT16 AT4G32040.1 374 41.86 5.71 细胞核Nucleus
BnaC07g43650D BnKNAT17 AT4G32040.1 400 45.35 5.37 细胞核Nucleus
BnaA08g20500D BnKNAT18 AT1G23380.1 208 22.92 4.49 细胞核Nucleus
BnaA08g20510D BnKNAT19 AT1G23380.1 121 14.03 8.25 细胞核Nucleus
BnaA09g31100D BnKNAT20 AT1G23380.1 235 26.11 4.41 细胞核Nucleus
BnaAnng30720D BnKNAT21 AT1G23380.1 204 23.26 5.96 细胞核Nucleus
BnaC05g18670D BnKNAT22 AT1G23380.1 221 24.45 4.35 细胞核Nucleus
BnaC08g06320D BnKNAT23 AT1G23380.1 314 35.23 5.10 细胞核Nucleus
BnaCnng70390D BnKNAT24 AT1G23380.2 205 23.48 6.22 细胞核Nucleus
BnaA09g12980D BnKNAT25 AT1G62990.1 293 33.02 5.62 细胞核Nucleus
BnaA09g52990D BnKNAT26 AT1G62990.1 294 33.10 5.85 细胞核Nucleus
BnaC04g20090D BnKNAT27 AT1G62990.1 104 11.46 4.90 细胞核Nucleus
BnaC04g20110D BnKNAT28 AT1G62990.1 222 25.73 7.84 细胞核Nucleus
BnaC09g12900D BnKNAT29 AT1G62990.1 102 11.09 5.15 细胞核Nucleus
BnaCnng51440D BnKNAT30 AT1G62990.1 294 33.09 5.78 细胞核Nucleus
BnaA06g09570D BnKNAT31 AT1G14760.2 141 16.25 4.57 细胞核Nucleus
BnaA09g45470D BnKNAT32 AT1G14760.2 135 15.31 4.36 细胞核Nucleus
BnaC05g10940D BnKNAT33 AT1G14760.2 137 15.70 4.95 细胞核Nucleus
BnaC08g39310D BnKNAT34 AT1G14760.2 135 15.25 4.37 细胞核Nucleus
BnaA09g13310D BnSTM1 AT1G62360.1 383 43.11 5.82 细胞核Nucleus
BnaC09g13580D BnSTM2 AT1G62360.1 383 43.20 5.92 细胞核Nucleus

图2

甘蓝型油菜、拟南芥、甘蓝和白菜型油菜中KNOX蛋白的系统进化分析"

图3

甘蓝型油菜BnKNOX基因家族的基因结构和保守基序分析 A: BnKNOX蛋白的系统进化分析; B: BnKNOX蛋白的保守基序分析, Motif 1~15为不同颜色代表的基序组成; C: BnKNOX基因结构。UTR: 非翻译区; CDS: 编码区。"

图4

BnKNOX基因的染色体分布及组内共线性分析"

附表1

甘蓝型油菜BnKNOX基因的复制类型"

基因号
Gene ID
基因名称
Gene name
复制方式
Duplication type
BnaA03g23610D BnKNAT1 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC03g28030D BnKNAT2 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaCnng59830D BnKNAT3 分散复制Dispersed duplication
BnaA02g14950D BnKNAT4 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC02g19900D BnKNAT5 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaA02g32110D BnKNAT6 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaA06g27560D BnKNAT7 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC02g40790D BnKNAT8 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC07g29530D BnKNAT9 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaA02g00810D BnKNAT10 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaA03g03190D BnKNAT11 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC03g04580D BnKNAT12 分散复制Dispersed duplication
BnaCnng20070D BnKNAT13 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaA01g04870D BnKNAT14 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaA03g51900D BnKNAT15 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC01g06410D BnKNAT16 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC07g43650D BnKNAT17 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaA08g20500D BnKNAT18 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaA08g20510D BnKNAT19 分散复制Dispersed duplication
BnaA09g31100D BnKNAT20 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaAnng30720D BnKNAT21 分散复制Dispersed duplication
BnaC05g18670D BnKNAT22 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC08g06320D BnKNAT23 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaCnng70390D BnKNAT24 分散复制Dispersed duplication
BnaA09g12980D BnKNAT25 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaA09g52990D BnKNAT26 分散复制Dispersed duplication
BnaC04g20090D BnKNAT27 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC04g20110D BnKNAT28 分散复制Dispersed duplication
BnaC09g12900D BnKNAT29 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaCnng51440D BnKNAT30 分散复制Dispersed duplication
BnaA06g09570D BnKNAT31 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaA09g45470D BnKNAT32 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC05g10940D BnKNAT33 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC08g39310D BnKNAT34 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaA09g13310D BnSTM1 全基因组复制或片段复制Whole genome duplication or segmental duplication
BnaC09g13580D BnSTM2 全基因组复制或片段复制Whole genome duplication or segmental duplication

图5

甘蓝型油菜与拟南芥、白菜型油菜和甘蓝KNOX基因的共线性关系"

图6

BnKNOX基因在甘蓝型油菜不同组织和发育阶段的表达模式"

附表2

甘蓝型油菜BnKNOX基因在不同组织和发育阶段的RNA-seq数据(FPKM)"

基因号
Gene ID
基因名称Gene name 叶片Leaf 子叶Cotyledon 下胚轴Hypocotyl
Root
茎尖分生组织SAM 茎Stem 花苞Bud 花Flower 胚乳Endosperm 授粉后14 d角果Silique-14 DAP 授粉后21 d种子Seed-21 DAP 授粉后28 d种子Seed-28 DAP 授粉后35 d种子Seed-35 DAP 授粉后42 d种子Seed-42 DAP 授粉后50 d种子Seed-50 DAP
BnaA03g23610D BnKNAT1 0.016 0.010 38.382 1.843 3.479 29.144 1.896 2.620 0.005 0.915 0.118 0.771 0.135 0.038 0.000
BnaC03g28030D BnKNAT2 0.016 0.200 45.299 2.049 5.101 51.947 2.567 3.286 0 1.399 0.370 1.185 0.139 0.023 0.018
BnaCnng59830D BnKNAT3 0 0.027 14.658 0.836 1.934 13.746 0.691 0.851 0 0.425 0.207 0.656 0.041 0 0
BnaA02g14950D BnKNAT4 0.018 0.364 6.640 2.548 1.230 3.904 0.957 0.890 0 0.746 0.133 1.078 0.471 0.998 1.078
BnaC02g19900D BnKNAT5 0.191 0.507 8.285 2.451 4.376 9.119 1.963 1.544 0 1.744 0.438 0.989 0.543 1.121 0.927
BnaA02g32110D BnKNAT6 2.760 10.350 5.929 1.369 4.090 2.329 5.397 8.268 0.830 9.239 2.211 1.630 0.838 1.501 1.715
BnaA06g27560D BnKNAT7 15.294 66.703 14.521 5.061 45.785 7.394 21.312 27.772 8.066 26.798 13.314 8.149 3.248 5.073 2.501
BnaC02g40790D BnKNAT8 3.086 21.930 18.387 3.817 7.507 2.332 3.834 2.333 0.439 8.187 1.745 0.699 0.251 0.962 2.632
BnaC07g29530D BnKNAT9 21.780 35.189 8.946 10.544 48.375 8.729 24.791 30.841 4.942 31.374 18.312 7.426 3.727 4.128 4.535
BnaA02g00810D BnKNAT10 6.884 8.202 1.289 0.033 16.883 1.866 7.954 5.470 1.157 11.089 1.673 3.216 0.577 0.097 0.089
BnaA03g03190D BnKNAT11 10.194 2.581 0.646 0.135 10.561 2.062 1.017 2.510 0.125 4.394 0.372 1.823 0.454 0.072 0.116
BnaC03g04580D BnKNAT12 5.192 8.137 1.622 0.472 8.129 1.447 1.784 3.371 0.372 4.989 0.574 2.097 0.444 0.066 0.033
BnaCnng20070D BnKNAT13 2.811 0 0 0 7.802 0.882 6.550 7.581 1.448 6.022 0.836 1.446 0.447 0.018 0.012
BnaA01g04870D BnKNAT14 1.749 8.448 14.776 12.178 2.868 2.952 1.899 0.651 0 5.498 3.699 1.433 4.451 2.595 2.046
BnaA03g51900D BnKNAT15 7.624 34.107 35.739 56.554 10.255 4.506 3.373 3.358 6.662 8.299 7.237 6.074 3.798 4.120 3.453
BnaC01g06410D BnKNAT16 0.679 3.106 4.643 2.947 1.017 0.940 0.692 0.080 0 1.220 0.530 0.904 2.461 0.995 0.785
BnaC07g43650D BnKNAT17 6.761 15.548 31.413 34.109 9.369 6.851 4.481 4.621 8.137 10.765 14.927 9.026 6.043 3.595 1.987
BnaA08g20500D BnKNAT18 0.006 0 9.688 1.984 1.673 6.009 2.118 2.704 0.010 0.095 0.146 0.285 0.210 0.177 0.385
BnaA08g20510D BnKNAT19 0.006 0 9.688 1.984 1.673 6.009 2.118 2.704 0.010 0.095 0.146 0.285 0.210 0.177 0.385
BnaA09g31100D BnKNAT20 0.019 0 2.196 0.385 1.311 1.625 0.478 0.229 0.128 0.197 0.315 0.377 0.110 0.062 0.106
BnaAnng30720D BnKNAT21 0.011 0.043 2.302 0.614 0.684 1.250 0.441 0.244 0.181 0.336 0.693 0.312 0.022 0.264 0.088
BnaC05g18670D BnKNAT22 0.023 0.022 1.390 0.582 0.768 1.340 0.687 0.474 0.002 0.078 0.044 0.126 0.039 0.060 0.031
BnaC08g06320D BnKNAT23 0.023 0.357 23.487 2.001 5.116 12.296 2.922 4.588 0 0.213 0.162 1.089 1.002 0.716 2.628
BnaCnng70390D BnKNAT24 0.045 0.032 1.723 1.409 1.276 2.123 1.039 0.811 0.019 0.079 0.118 0.275 0.113 0.074 0.044
BnaA09g12980D BnKNAT25 1.334 0.865 5.515 5.768 1.228 3.900 7.155 4.796 11.808 11.919 24.940 13.193 8.877 5.448 0.014
BnaA09g52990D BnKNAT26 1.294 0.096 0.444 0.534 0.549 17.354 12.259 5.379 22.756 21.863 50.558 28.156 24.423 7.101 0.053
BnaC04g20090D BnKNAT27 0.070 0.037 0.121 0.116 0.296 1.135 0.391 0.107 0.512 0.472 2.355 0.660 0.797 0.168 0.016
BnaC04g20110D BnKNAT28 0 0 0 0 0 0.079 0.023 0 0 0 0 0 0 0 0
BnaC09g12900D BnKNAT29 2.546 0.378 1.021 0.379 1.235 3.922 4.268 7.819 7.158 14.842 16.892 9.738 6.075 3.079 0.032
BnaCnng51440D BnKNAT30 1.390 0.146 0.978 0.900 1.741 13.686 10.700 5.352 21.985 16.103 37.943 19.860 17.638 5.264 0.017
BnaA06g09570D BnKNAT31 0 0 0 0.060 1.292 0 4.234 2.614 0 0.083 0.862 0 0 0.188 1.526
BnaA09g45470D BnKNAT32 0 0 0 0.688 1.327 0 0 0 0 0.034 0.398 0.348 0.080 1.149 3.517
BnaC05g10940D BnKNAT33 0 0 0 0 0.966 0.024 7.893 4.128 0 0 0.172 0.370 0.055 0.080 0.089
BnaC08g39310D BnKNAT34 0 0 0 0.245 1.902 0 0.021 0 0.067 0.114 3.166 0.137 0.063 0.239 1.408
BnaA09g13310D BnSTM1 0.020 0 0.735 1.191 5.619 66.414 8.814 11.525 0 2.708 0.166 0.286 0.160 0.022 0.027
BnaC09g13580D BnSTM2 0.010 0 6.015 0.037 8.231 85.818 12.789 16.183 0 2.980 0.284 0.485 0.133 0.051 0.074

图7

BnKNOX基因的启动子顺式作用元件分析"

图8

干旱胁迫下甘蓝型油菜叶片中BnKNOX的表达模式"

图9

渗透胁迫下甘蓝型油菜叶片中BnKNOX的表达模式"

[1] Bürglin T R. Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res, 1997, 25: 4173-4180.
doi: 10.1093/nar/25.21.4173 pmid: 9336443
[2] Mukherjee K, Bürglin T R. Comprehensive analysis of animal TALE homeobox genes: new conserved motifs and cases of accelerated evolution. J Mol Evol, 2007, 65: 137-153.
pmid: 17665086
[3] Mukherjee K, Brocchieri L, Bürglin T R. A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol, 2009, 26: 2775-2794.
doi: 10.1093/molbev/msp201 pmid: 19734295
[4] Vollbrecht E, Veit B, Sinha N, Hake S. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature, 1991, 350: 241-243.
doi: 10.1038/350241a0
[5] Gao J, Yang X, Zhao W, Lang T, Samuelsson T. Evolution, diversification, and expression of KNOX proteins in plants. Front Plant Sci, 2015, 6: 882.
doi: 10.3389/fpls.2015.00882 pmid: 26557129
[6] Sakamoto T, Nishimura A, Tamaoki M, Kuba M, Tanaka H, Iwahori S, Matsuoka M. The conserved KNOX domain mediates specificity of tobacco KNOTTED1-type homeodomain proteins. Plant Cell, 1999, 11: 1419-1432.
pmid: 10449577
[7] Nagasaki H, Sakamoto T, Sato Y, Matsuoka M. Functional analysis of the conserved domains of a rice KNOX homeodomain protein, OSH15. Plant Cell, 2001, 13: 2085-2098.
pmid: 11549765
[8] Scofield S, Murray J A. KNOX gene function in plant stem cell niches. Plant Mol Biol, 2006, 60: 929-946.
doi: 10.1007/s11103-005-4478-y pmid: 16724262
[9] Kerstetter R, Vollbrecht E, Lowe B, Veit B, Yamaguchi J, Hake S. Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell, 1994, 6: 1877-1887.
doi: 10.1105/tpc.6.12.1877 pmid: 7866030
[10] Furumizu C, Alvarez J P, Sakakibara K, Bowman J L. Antagonistic roles for KNOX1 and KNOX2 genes in patterning the land plant body plan following an ancient gene duplication. PLoS Genet, 2015, 11: e1004980.
doi: 10.1371/journal.pgen.1004980
[11] Magnani E, Hake S. KNOX lost the OX: the Arabidopsis KNATM gene defines a novel class of KNOX transcriptional regulators missing the homeodomain. Plant Cell, 2008, 20: 875-887.
doi: 10.1105/tpc.108.058495 pmid: 18398054
[12] Bueno N, Alvarez J M, Ordás R J. Characterization of the KNOTTED1-LIKE HOMEOBOX (KNOX) gene family in Pinus pinaster Ait. Plant Sci, 2020, 301: 110691.
doi: 10.1016/j.plantsci.2020.110691
[13] Clark S E, Jacobsen S E, Levin J Z, Meyerowitz E M. The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development, 1996, 122: 1567-1575.
doi: 10.1242/dev.122.5.1567 pmid: 8625843
[14] Chuck G, Lincoln C, Hake S. KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell, 1996, 8: 1277-1289.
doi: 10.1105/tpc.8.8.1277 pmid: 8776897
[15] Endrizzi K, Moussian B, Haecker A, Levin J Z, Laux T. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J, 1996, 10: 967-979.
doi: 10.1046/j.1365-313x.1996.10060967.x pmid: 9011081
[16] Long J A, Moan E I, Medford J I, Barton M K. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature, 1996, 379: 66-69.
doi: 10.1038/379066a0
[17] Rupp H M, Frank M, Werner T, Strnad M, Schmülling T. Increased steady state mRNA levels of the STM and KNAT1 homeobox genes in cytokinin overproducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem. Plant J, 1999, 18: 557-563.
pmid: 10417706
[18] Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol, 2005, 15: 1560-1565.
doi: 10.1016/j.cub.2005.07.023 pmid: 16139211
[19] Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol, 2005, 15: 1566-1571.
doi: 10.1016/j.cub.2005.07.060
[20] Scofield S, Dewitte W, Murray J A. The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis. Plant J, 2007, 50: 767-781.
pmid: 17461793
[21] Scofield S, Dewitte W, Murray J A. A model for Arabidopsis class-1 KNOX gene function. Plant Signal Behav, 2008, 3: 257-259.
doi: 10.4161/psb.3.4.5194 pmid: 19704647
[22] Scofield S, Dewitte W, Murray J A. STM sustains stem cell function in the Arabidopsis shoot apical meristem and controls KNOX gene expression independently of the transcriptional repressor AS1. Plant Signal Behav, 2014, 9: e28934.
doi: 10.4161/psb.28934
[23] Belles-Boix E, Hamant O, Witiak S M, Morin H, Traas J, Pautot V. KNAT6: an Arabidopsis homeobox gene involved in meristem activity and organ separation. Plant Cell, 2006, 18: 1900-1907.
doi: 10.1105/tpc.106.041988 pmid: 16798887
[24] Hareven D, Gutfinger T, Parnis A, Eshed Y, Lifschitz E. The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell, 1996, 84: 735-744.
doi: 10.1016/s0092-8674(00)81051-x pmid: 8625411
[25] Bharathan G, Goliber T E, Moore C, Kessler S, Pham T, Sinha N R. Homologies in leaf form inferred from KNOXI gene expression during development. Science, 2002, 296: 1858-1860.
doi: 10.1126/science.1070343 pmid: 12052958
[26] Hay A, Tsiantis M. The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nat Genet, 2006, 38: 942-947.
doi: 10.1038/ng1835
[27] Nikolov L A, Tsiantis M. Interspecies gene transfer as a method for understanding the genetic basis for evolutionary change: progress, pitfalls, and prospects. Front Plant Sci, 2015, 6: 1135.
doi: 10.3389/fpls.2015.01135 pmid: 26734038
[28] Rast-Somssich M I, Broholm S, Jenkins H, Canales C, Vlad D, Kwantes M, Bilsborough G, Dello Ioio R, Ewing R M, Laufs P, Huijser P, Ohno C, Heisler M G, Hay A, Tsiantis M. Alternate wiring of a KNOXI genetic network underlies differences in leaf development of A. thaliana and C. hirsuta. Genes Dev, 2015, 29: 2391-2404.
[29] Das Gupta M, Tsiantis M. Gene networks and the evolution of plant morphology. Curr Opin Plant Biol, 2018, 45: 82-87.
doi: S1369-5266(18)30004-9 pmid: 29885565
[30] Shu Y, Tao Y, Wang S, Huang L, Yu X, Wang Z, Chen M, Gu W, Ma H. GmSBH1, a homeobox transcription factor gene, relates to growth and development and involves in response to high temperature and humidity stress in soybean. Plant Cell Rep, 2015, 34: 1927-1937.
doi: 10.1007/s00299-015-1840-7 pmid: 26205508
[31] Tao Y, Chen M, Shu Y, Zhu Y, Wang S, Huang L, Yu X, Wang Z, Qian P, Gu W, Ma H. Identification and functional characterization of a novel BEL1-LIKE homeobox transcription factor GmBLH4 in soybean. Plant Cell Tissue Organ Cult, 2018, 134: 331-344.
doi: 10.1007/s11240-018-1419-4
[32] Song X, Zhao Y, Wang J, Lu M Z. The transcription factor KNAT2/6b mediates changes in plant architecture in response to drought via down-regulating GA20ox1 in Populus alba × P. glandulosa. J Exp Bot, 2021, 72: 5625-5637.
doi: 10.1093/jxb/erab201
[33] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617 (in Chinese with English abstract).
[34] Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345: 950-953.
doi: 10.1126/science.1253435 pmid: 25146293
[35] Cheng F, Wu J, Wang X. Genome triplication drove the diversification of Brassica plants. Hortic Res, 2014, 1: 14024.
doi: 10.1038/hortres.2014.24
[36] Akter A, Itabashi E, Kakizaki T, Okazaki K, Dennis E S, Fujimoto R. Genome triplication leads to transcriptional divergence of FLOWERING LOCUS C genes during vernalization in the genus Brassica. Front Plant Sci, 2021, 11: 619417.
doi: 10.3389/fpls.2020.619417
[37] El-Gebali S, Mistry J, Bateman A, Eddy S R, Luciani A, Potter S C, Qureshi M, Richardson L J, Salazar G A, Smart A, Sonnhammer E L L, Hirsh L, Paladin L, Piovesan D, Tosatto S C E, Finn R D. The Pfam protein families database in 2019. Nucleic Acids Res, 2019, 47: D427-D432.
[38] Potter S C, Luciani A, Eddy S R, Park Y, Lopez R, Finn R D. HMMER web server: 2018 update. Nucleic Acids Res, 2018, 46: W200-W204.
doi: 10.1093/nar/gky448
[39] Marchler-Bauer A, Bryant S H. CD-search: protein domain annotations on the fly. Nucleic Acids Res, 2004, 32: W327-W331.
doi: 10.1093/nar/gkh454 pmid: 15215404
[40] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[41] Xu G, Guo C, Shan H, Kong H. Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci USA, 2012, 109: 1187-1192.
doi: 10.1073/pnas.1109047109 pmid: 22232673
[42] Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290: 1151-1155.
doi: 10.1126/science.290.5494.1151 pmid: 11073452
[43] Kong W, Ding L, Cheng J, Wang B. Identification and expression analysis of genes with pathogen-inducible cis-regulatory elements in the promoter regions in Oryza sativa. Rice, 2018, 11: 52.
doi: 10.1186/s12284-018-0243-0
[44] Ho C L, Geisler M. Genome-wide computational identification of biologically significant cis-regulatory elements and associated transcription factors from rice. Plants (Basel), 2019, 8: 441.
[45] Meng L, Liu X, He C, Xu B, Li Y, Hu Y. Functional divergence and adaptive selection of KNOX gene family in plants. Open Life Sci, 2020, 15: 346-363.
[46] Zhu Y, Wu N, Song W, Yin G, Qin Y, Yan Y, Hu Y. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies. BMC Plant Biol, 2014, 14: 93.
doi: 10.1186/1471-2229-14-93 pmid: 24720629
[47] Sun R, Qin T, Wall S B, Wang Y, Guo X, Sun J, Liu Y, Wang Q, Zhang B. Genome-wide identification of KNOX transcription factors in cotton and the role of GhKNOX4-A and GhKNOX22-D in response to salt and drought stress. Int J Biol Macromol, 2023, 226: 1248-1260.
doi: 10.1016/j.ijbiomac.2022.11.238
[48] Han Y, Zhang L, Yan L, Xiong X, Wang W, Zhang X H, Min D H. Genome-wide analysis of TALE superfamily in Triticum aestivum reveals TaKNOX11-A is involved in abiotic stress response. BMC Genomics, 2022, 23: 89.
doi: 10.1186/s12864-022-08324-y
[1] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[2] 左春阳, 李亚玮, 李焱龙, 金双侠, 朱龙付, 张献龙, 闵玲. 陆地棉漆酶基因家族成员表达模式分析[J]. 作物学报, 2023, 49(9): 2344-2361.
[3] 文利超, 熊涛, 邓智超, 刘涛, 郭存, 李伟, 郭永峰. 烟草转录因子NtNAC080在非生物胁迫下的表达分析及功能鉴定[J]. 作物学报, 2023, 49(8): 2171-2182.
[4] 魏正欣, 刘昌燕, 陈宏伟, 李莉, 孙龙清, 韩雪松, 焦春海, 沙爱华. 基于干旱胁迫转录组信息的蚕豆ASPAT基因家族分析[J]. 作物学报, 2023, 49(7): 1871-1881.
[5] 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842.
[6] 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531.
[7] 杨一丹, 何督, 刘静, 张岩, 陈飞志, 巫燕飞, 杜雪竹. 寄主诱导的基因沉默干扰核盘菌致病基因OAH在甘蓝型油菜抗菌核病中的应用[J]. 作物学报, 2023, 49(6): 1542-1550.
[8] 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725.
[9] 马春敏, 李维希, 李芳军, 田晓莉, 李召虎. 陆地棉硝酸盐转运体NRT基因家族鉴定及表达分析[J]. 作物学报, 2023, 49(6): 1496-1517.
[10] 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210.
[11] 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析[J]. 作物学报, 2023, 49(5): 1211-1221.
[12] 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954.
[13] 陈晓汉, 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. BnABCI8影响甘蓝型油菜叶绿体发育[J]. 作物学报, 2023, 49(4): 893-905.
[14] 周宾寒, 杨竹, 王书平, 方正武, 胡赞民, 徐兆师, 张迎新. 小麦幼苗活性LTR反转录转座子筛选及其对非生物胁迫的响应[J]. 作物学报, 2023, 49(4): 966-977.
[15] 徐子寅, 于晓玲, 邹良平, 赵平娟, 李文彬, 耿梦婷, 阮孟斌. 木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选[J]. 作物学报, 2023, 49(4): 955-965.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .