欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (11): 2978-2990.doi: 10.3724/SP.J.1006.2023.24247

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

马铃薯PAL基因家族的全基因组鉴定及其在非生物胁迫下和块茎花色素苷合成中的表达分析

朱金勇1(), 刘震1, 曾钰婷2, 李志涛1, 陈丽敏1, 李泓阳1, 史田斌1, 张俊莲3, 白江平1, 刘玉汇1,*()   

  1. 1甘肃农业大学农学院 / 省部共建干旱生境作物学国家重点实验室(甘肃农业大学) / 甘肃省作物遗传改良与种质创新重点实验室, 甘肃兰州 730070
    2西藏自治区农牧科学院蔬菜研究所, 西藏拉萨 850032
    3甘肃农业大学园艺学院, 甘肃兰州 730070
  • 收稿日期:2022-11-05 接受日期:2023-04-17 出版日期:2023-11-12 网络出版日期:2023-05-11
  • 通讯作者: 刘玉汇, E-mail: lyhui@gsau.edu.cn
  • 作者简介:E-mail: 1259245907@qq.com
  • 基金资助:
    国家自然科学基金项目(31860398);甘肃省科技计划资助项目(22JR5RA834);财政部和农业农村部国家现代农业产业技术体系资助项目(CARS-09-P14);省部共建干旱生境作物学国家重点实验室(甘肃农业大学)开放基金项目(GSCS-2021-Z02);甘肃农业大学“伏羲人才”计划项目(Gaufx-02Y04);甘肃农业大学公招博士科研启动基金项目(GAU-KYQD-2020-11)

Genome-wide identification of potato (Solanum tuberosum L.) PAL gene family and its expression analysis in abiotic stress and tuber anthocyanin synthesis

ZHU Jin-Yong1(), LIU Zhen1, ZENG Yu-Ting2, LI Zhi-Tao1, CHEN Li-Min1, LI Hong-Yang1, SHI Tian-Bin1, ZHANG Jun-Lian3, BAI Jiang-Ping1, LIU Yu-Hui1,*()   

  1. 1College of Agronomy, Gansu Agricultural University / State Key Laboratory of Aridland Crop Science (Gansu Agricultural University) / Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, Gansu, China
    2Institute of Vegetable Sciences, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, Tibet, China
    3College of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2022-11-05 Accepted:2023-04-17 Published:2023-11-12 Published online:2023-05-11
  • Supported by:
    National Natural Science Foundation of China(31860398);Science and Technology Program of Gansu Province(22JR5RA834);China Agriculture Research System of MOF and MARA(CARS-09-P14);State Key Laboratory of Aridland Crop Science of China(GSCS-2021-Z02);Fuxi Talent Project of Gansu Agricultural University(Gaufx-02Y04);Scientific Research Startup Funds for Openly-recruited Doctors Agricultural University(GAU-KYQD-2020-11)

摘要:

苯丙氨酸解氨酶(phenylalanin ammonia-lyase, PAL)是苯丙烷代谢途径的限速酶和关键酶, 在植物生长发育过程中发挥着重要作用。本研究在马铃薯(Solanum tuberosum L.)全基因组水平下, 利用BlastP和HMM 3.1鉴定到8个PAL基因家族成员, 利用ExPASy、CELLO、PlantCARE等在线工具, 对PAL基因家族成员的进行生物信息学分析。利用PGSC数据库下载的RNA-seq数据, 分析了StPALs在双单倍体(DM)马铃薯不同组织部位和非生物胁迫下的表达模式。对3个不同颜色马铃薯块茎组织(皮和肉)进行RNA-seq, 以及利用3个不同颜色块茎杂交子代的薯肉进行qPCR分析。结果表明, 8个StPALs分布在3、5、9和10号染色体上, 它们与烟草(Nicotiana tabacum) PAL的亲缘关系较近。StPAL基因成员的启动子区域内含有多个顺式元件, 包括光响应、逆境胁迫响应、激素响应、生长发育相关和转录因子调控的多种顺式元件。StPAL2在匍匐茎中特异表达, StPAL3/5/8在块茎和匍匐茎中特异表达, StPAL3在甘露醇处理下下调表达, StPAL3StPAL8在热胁迫中上调表达。它们可能参与了马铃薯块茎的发育和非生物胁迫响应。5个StPALs (StPAL3/4/5/6/8)基因在彩色薯肉中均上调表达, 可能参与马铃薯薯肉中花色素苷的生物合成。这些结果为进一步了解StPAL基因家族特征, 深入分析StPALs基因在马铃薯中的功能提供了理论依据。

关键词: 马铃薯, PAL基因家族, 非生物胁迫, 花色素苷生物合成, 表达分析

Abstract:

The phenylalanine ammonia-lyase (PAL) is the rate limiting enzyme and key enzyme in phenylpropane metabolism pathway, which plays an important role in plant growth. In this study, a total of 8 gene family members (StPALs) in potato (Solanum tuberosum L.) were identified by BlastP and Hmmer 3.1 software, and their bioinformation were analyzed by the ExPASy, CELLO, PlantCARE, and other online tool. We analyzed the relative expression pattern of StPAL genes in different tissues of double monoploid (DM) potato, as well as under abiotic stresses by RNA-seq in Potato Genome Sequencing Consortium (PGSC) database. We performed RNA-seq on white, red, and purple tuber skin and flesh of three potato cultivars, and the relative expression levels of StPALs genes in different colors tubers (flesh) of three hybrid progeny potatoes were detected by qPCR. StPAL genes were distributed on chromosomes 3, 5, 9, and 10, and eight StPALs were closely related to tobacco (Nicotiana tabacum) PAL. The cis-acting elements revealed that the promoter regions of StPAL genes contained many elements, including light response, stress response to adversity, hormone response, growth and development, and transcription factor binding elements. The results showed that StPAL2 was specifically expressed in stolons, and StPAL3/5/8 were mainly expressed in tubers and stolons. The relative expression level of StPAL3 gene were down-regulated under mannitol treatment, and the relative expression levels of StPAL3 and StPAL8 genes were up-regulated under heat stress. The above results suggested that StPALs might be involved in the tuber growth and abiotic stress response. By transcriptomic and qPCR analysis, the relative expression levels of 5 StPAL genes (StPAL3/4/5/6/8) were up-regulated in the flesh of color potato, suggesting that they may participate in the biosynthesis of anthocyanins in flesh. These results provide a theoretical basis for further understanding the StPAL gene family and analyzing the function of StPALs in potato.

Key words: potato, PAL genes family, abiotic stress, anthocyanin biosynthesis, expression analysis

图1

3个不同颜色马铃薯品种的块茎[35]"

图2

3个马铃薯杂交子代的块茎表型"

表1

qPCR引物序列"

基因名称
Gene name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
StEF-1α GGTCGTGTTGAGACTGGTGTGATC GCTTCGTGGTGCATCTCTACAGAC
PG2021549 CTCACAGCAGGAAGGAATCCAAGC TGAAGTTCCGAGCAGTAAGAAGCC
PG0031457 CTCACAGCAGGAAGGAATCCAAGC GCTCGGCACTCTGAACATGGTTAG
PG0005492 ATCCGACTAGGTGGTGGTGAGATG ATCCAATCACTGCTCGCCTTGAC
PG0023458 CACAGCGTCTGGTGACTTGGTAC GCGTCCAACAGTTCTCCATTAGGC
PG1021549 CTGCTGAGGCTGTGGACATCTTG TTGGCTACTTGGCTTACGGTGTTC
PG2021564 TGGAACGGTCACTGCCTCAGG CACTAACACCAGCCACACGGAAC
PG0019386 ACTGCCTCGGGTGATCTTGTCC ACTAATACCAGCAACACGGAACGC
PG0031365 GCCGAAGGAAGGACTTGCTCTTG CGGGCTTTCCATTCATCACCTCAG

表2

StPAL基因家族理化性质及亚细胞定位"

基因名称
Gene
name
氨基酸长度
Amino acid
length
相对分子量
Molecular
weight (kD)
等电点
Point
isoelectric (pI)
亚细胞定位
Subcellular
localization
染色体定位
Chromosome
localization
PG0031457, StPAL1 435 48.34 5.84 细胞质Cytoplasmic Chr03
PG0005492, StPAL2 667 73.69 5.41 细胞质Cytoplasmic Chr05
PG0023458, StPAL3 707 77.51 6.07 细胞质Cytoplasmic Chr05
PG2021549, StPAL4 391 43.55 6.62 细胞质Cytoplasmic Chr09
PG1021549, StPAL5 722 78.49 6.04 细胞质Cytoplasmic Chr09
PG2021564, StPAL6 719 78.23 6.15 细胞质Cytoplasmic Chr09
PG0019386, StPAL7 689 75.46 6.28 叶绿体Chloroplast Chr10
PG0031365, StPAL8 711 77.54 5.86 细胞质Cytoplasmic Chr10

图3

多个物种中PALs蛋白进化树 红色圆表示StPALs, 绿色五角星表示AtPALs, 绿色六边形表示NtPALs。"

图4

StPALs基因家族的进化关系、基因结构和保守基序分析 A: StPALs进化树。B: StPALs基因的外显子/内含子结构。蓝色框表示外显子, 相同长度的黑线表示内含子。上游/下游区域红色方框表示。C: StPALs中保守基序的分布。不同颜色的框代表10个不同的基序。"

图5

马铃薯PAL基因启动子顺式作用元件预测"

图6

StPALs在不同组织部位(A)、非生物胁迫(B)和不同薯皮薯肉(C)中的表达 A: 对8个StPALs基因表达量取以2为底的对数, 用log2FPKM绘制色标。B: 在3种非生物胁迫(盐、甘露醇和热胁迫)中使用处理比对照的比值, 取以2为底的对数, 用log2FC绘制色标。C: 在不同薯皮薯肉中使用彩色品种/白色品种的比值, 取以2为底的对数, 用log2FC绘制色标。XDS、LTS和HMS分别代表“新大坪”、“铃田红美”和“黑美人”的薯皮。XDF、LTF和HMF分别代表“新大坪”、“铃田红美”和“黑美人”的薯肉。"

图7

8个StPAL基因在不同颜色块茎(薯皮和薯肉)中的qPCR分析 对8个StPALs在白色和彩色薯皮和薯肉中的表达进行了qPCR分析。XDS、LTS和HMS分别代表“新大坪”、“红美”和“黑美人”的薯皮。XDF、LTF和HMF分别代表“新大坪”、“铃田红美”和“黑美人”的薯肉。数据为3个独立生物重复的平均值(±SE)。条形图上方的不同字母表示P < 0.05时的显著差异。"

图8

8个StPAL基因在3个马铃薯杂交子代(Y、R、P)薯肉中的qPCR分析 对8个StPALs在Y、R和P薯肉中的表达进行了qPCR分析。数据为3个独立生物重复的平均值(±SE)。条形图上方的不同字母表示P < 0.05时的显著差异。缩写同图2。"

[1] 黄小贞, 赵德刚. 植物苯丙氨酸解氨酶表达调控机理的研究进展. 贵州农业科学, 2017, 45(4): 16-20.
Huang X Z, Zhao D G. Research progress in regulation and control mechanism of phenylalanine ammonia lyase in plants. Guizhou Agric Sci, 2017, 45(4): 16-20 (in Chinese with English abstract).
[2] 冯凯, 陈颖, 刘瑞, 马娟娟, 赵斌. 银杏类黄酮代谢研究进展. 西南林业大学学报(自然科学版), 2022, 42(1): 178-188.
Feng K, Chen Y, Liu R, Ma J J, Zhao B. Advances in flavonoid metabolism of Ginkgo biloba. J Southwest For Univ (Nat Sci Edn), 2022, 42(1): 178-188 (in Chinese with English abstract).
[3] Vanholme R, Demedts B B, Morreel K, Ralph J, Boerjan W. Lignin biosynthesis and structure. Plant Physiol, 2010, 153: 895-905.
doi: 10.1104/pp.110.155119 pmid: 20472751
[4] 赵秀林, 王富荣, 徐凌云, 何华平, 臧程, 金伟. 红肉桃果实发育过程中色素含量及PAL活性的变化. 食品工业科技, 2012, 33(12): 125-127.
Zhao X L, Wang F R, Xu L Y, He H P, Zang C, Jin W. Changes of pigments content and PAL activity of blood-flesh peach during fruit development. Sci Technol Food Ind, 2012, 33(12): 125-127 (in Chinese with English abstract).
[5] Jiang Y M, Joyce D C. ABA effects on ethylene production, PAL activity, anthocyanin and phenolic contents of strawberry fruit. Plant Growth Regul, 2003, 39: 171-174.
doi: 10.1023/A:1022539901044
[6] 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析. 作物学报, 2022, 48: 1669-1682.
doi: 10.3724/SP.J.1006.2022.14111
Li J Y, Li H Y, Ye G J, Su W, Sun H H, Wang J. Changes of anthocyanins and expression analysis of synthesis-related genes in potato during storage period. Acta Agron Sin, 2022, 48: 1669-1682 (in Chinese with English abstract).
[7] 李进步, 方丽平, 张亚楠, 杨卫娟, 郭庆, 李雷, 毕彩丽, 杨荣志. 棉花抗蚜性与苯丙氨酸解氨酶活性的关系. 应用昆虫学报, 2008, 45: 422-425.
Li J B, Fang L P, Zhang Y N, Yang W J, Guo Q, Li L, Bi C L, Yang R Z. The relationship between the resistance of cotton against cotton aphid, Aphis gossypii, and the activity of phenylalanine ammonia-lyase. Chin J Appl Entomol, 2008, 45: 422-425 (in Chinese with English abstract).
[8] Chen Y P, Li F J, Tian L, Huang M C, Deng R F, Li X L, Chen W, Wu P Z, Li M R, Jiang H W, Wu G J. The phenylalanine ammonia lyase gene LjPAL1 is involved in plant defense responses to pathogens and plays diverse roles in Lotus japonicus-rhizobium symbioses. Mol Plant Microbe Int, 2017, 30: 739-753.
doi: 10.1094/MPMI-04-17-0080-R
[9] Pan Q H, Zhan J C, Liu H T, Zhang J H, Chen J Y, Wen P F, Huang W D. Salicylic acid synthesized by benzoic acid 2-hydroxylase participates in the development of thermotolerance in pea plants. Plant Sci, 2006, 171: 226-233.
doi: 10.1016/j.plantsci.2006.03.012
[10] 王改利, 魏忠, 贺少轩, 周雪洁, 梁宗锁. 土壤干旱胁迫对酸枣叶片黄酮类代谢及某些生长和生理指标的影响. 植物资源与环境学报, 2011, 20(3): 1-8.
Wang G L, Wei Z, He S X, Zhou X J, Liang Z S. Effects of drought stress in soil on flavonoids metabolism in leaf and some growth and physiological indexes of Ziziphus jujuba var. spinosa. J Plant Resour Environ, 2011, 20(3): 1-8 (in Chinese with English abstract).
[11] 宋晓敏, 吕晓杰, 邱智敏, 邢建宏, 陈世品, 谭芳林, 陈伟. 红树植物秋茄类黄酮代谢及其抗氧化活性对高盐胁迫的响应. 西北植物学报, 2016, 36: 2461-2468.
Song X M, Lyu X J, Qiu Z M, Xing J H, Chen S P, Tan F L, Chen W. Flavonoid metabolism and antioxidant activity in response to salt stress in mangrove Kandelia candel. Acta Bot Boreali-Occident Sin, 2016, 36: 2461-2468 (in Chinese with English abstract).
[12] Peng R H, Yao Q H, Xiong A S, Fan H Q, Li X, Peng Y L. Ubiquitin-conjugating enzyme (E2) confers rice UV protection through phenylalanine ammonia-lyase gene promoter unit. Acta Bot Sin, 2003, 45: 1351-1358.
[13] Koukol J, Conn E E. The metabolism of aromatic compounds in higher plans: IV.Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J Biol Chem, 1961, 236: 2692-2698.
doi: 10.1016/S0021-9258(19)61721-7
[14] Huang J L, Gu M, Lai Z B, Fan B F, Shi K, Zhou Y H, Yu J Q, Chen Z X. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol, 2010, 153: 1526-1538.
doi: 10.1104/pp.110.157370
[15] Olsen K M, Lea U S, Slimestad R, Verheul M, Lillo C. Differential expression of four Arabidopsis PAL genes; PAL1and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis. J Plant Physiol, 2008, 165: 1491-1499.
doi: 10.1016/j.jplph.2007.11.005
[16] 李元, 高潇潇, 高召华, 何永美, 陈建军, 祖艳群. UV-B辐射和稻瘟病菌胁迫对水稻幼苗苯丙氨酸解氨酶活性和类黄酮含量的影响. 中国生态农业学报, 2010, 18: 856-860.
Li Y, Gao X X, Gao Z H, He Y M, Chen J J, Zu Y Q. Effect of enhanced UV-B radiation and inoculated blast isolate (Magnaporthe grisea) on phenylalanine ammonial-yase activity and flavonoid content in seedlings of two rice cultivars. Chin J Eco-Agric, 2010, 18: 856-860 (in Chinese with English abstract).
doi: 10.3724/SP.J.1011.2010.00856
[17] Han W, Wang M H. Phenylalanine ammonia-lyase gene (NtPAL4) induced by abiotic stresses in tobacco (Nicotiana tabacum). Korean J Plant Res, 2010, 23: 535-540.
[18] 杨会晓, 孙媛媛, 贾彩红, 金志强, 徐碧玉, 王卓. 香蕉苯丙氨酸解氨酶基因家族的全基因组鉴定及表达分析. 热带作物学报, 2019, 40: 1949-1957.
Yang H X, Sun Y Y, Jia C H, Jin Z Q, Xu B Y, Wang Z. Identification and expression analysis of phenylalanine ammonia-lyase gene family in banana. Chin J Trop Crops, 2019, 40: 1949-1957 (in Chinese with English abstract).
[19] 张丽之, 樊胜, 安娜, 左希亚, 高彩, 张东, 韩明玉. 苹果全基因组PAL基因家族成员的鉴定及表达分析. 浙江农业学报, 2018, 30: 2031-2043.
doi: 10.3969/j.issn.1004-1524.2018.12.07
Zhang L Z, Fan S, An N, Zuo X Y, Gao C, Zhang D, Han M Y. Identification and expression analysis of PAL gene family in apple. Acta Agric Zhejiangensis, 2018, 30: 2031-2043 (in Chinese with English abstract).
[20] Stokstad E. The new potato. Science, 2019, 363: 574-577.
doi: 10.1126/science.363.6427.574 pmid: 30733400
[21] Cho K, Cho K S, Sohn H B, Ha I J, Hong S Y, Lee H, Kim Y M, Nam M H. Network analysis of the metabolome and transcriptome reveals novel regulation of potato pigmentation. J Exp Bot, 2016, 67: 1519-1533.
doi: 10.1093/jxb/erv549 pmid: 26733692
[22] Brown C R, Wrolstad R, Durst R, Yang C P, Clevidence B. Breeding studies in potatoes containing high concentrations of anthocyanins. Am J Potato Res, 2003, 800: 241-250.
[23] Davies K M, Albert N W, Schwinn K E. From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning. Funct Plant Biol, 2012, 39: 619-638.
doi: 10.1071/FP12195 pmid: 32480814
[24] Muhlemann J K, Younts T L B, Muday G K. Flavonols control pollen tube growth and integrity by regulating ROS homeostasis during high-temperature stress. Proc Natl Acad Sci USA, 2018, 115: E11188-E11197.
[25] Bhat R, Stamminger R. Impact of ultraviolet radiation treatments on the physicochemical properties, antioxidants, enzyme activity and microbial load in freshly prepared hand pressed strawberry juice. Food Sci Technol Int, 2015, 21: 354-363.
doi: 10.1177/1082013214536708 pmid: 24867944
[26] Castellarin S D, Pfeiffer A, Sivilotti P, Degan M, Peterlunger E, Gaspero G D. Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ, 2007, 30: 1381-1399.
doi: 10.1111/j.1365-3040.2007.01716.x pmid: 17897409
[27] Christie P J, Alfenito M R, Walbot V. Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: Enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta, 1994, 194: 541-549.
doi: 10.1007/BF00714468
[28] Igwe E O, Charlton K E, Roodenrys S, Kent K, Fanning K, Netzel M E. Anthocyanin-rich plum juice reduces ambulatory blood pressure but not acute cognitive function in younger and older adults: a pilot crossover dose-timing study. Nutr Res, 2017, 47: 28-43.
doi: S0271-5317(17)30482-7 pmid: 29241576
[29] Bontempo P, Masi L D, Carafa V, Rigano D, Scisciola L, Iside C, Grassi R, Molinari A M, Aversano R, Nebbioso A, Carputo D, Altucci L. Anticancer activities of anthocyanin extract from genotyped Solanum tuberosum L. “Vitelotte”. J Funct Foods, 2015, 19: 584-593.
doi: 10.1016/j.jff.2015.09.063
[30] Zhou F, Wang T, Zhang BL, Zhao HF. Addition of sucrose during the blueberry heating process is good or bad? Evaluating the changes of anthocyanins/anthocyanidins and the anticancer ability in HepG-2 cells. Food Res Int, 2018, 107: 509-517.
doi: S0963-9969(18)30161-3 pmid: 29580514
[31] 郭英男, 刘月扬, 马静雨, 张敬, 马鑫彤, 张馨月, 刘建雨, 姚娜, 刘秀明, 李海燕. 红花PAL家族全基因组分析及其在悬浮细胞中的表达. 中草药, 2021, 52: 3362-3372.
Guo Y N, Liu Y Y, Ma J Y, Zhang J, Ma X T, Zhang X Y, Liu J Y, Yao N, Liu X M, Li H Y. Genome analysis of PAL gene family from Flos carthami and its expression in suspension cells. Chin Trad Herb Drugs, 2021, 52: 3362-3372 (in Chinese with English abstract).
[32] 李雨哲, 邢淋雪, 刘梦洁, 刘苏瑶, 鲍梦楠, 刘震. 棉花苯丙氨酸解氨酶基因家族的生物信息学分析. 棉花学报, 2021, 33(1): 66-74.
Li Y Z, Xing L X, Liu M J, Liu S Y, Bao M N, Liu Z. Bioinformatics analysis of the phenyla lanine ammonia lyase (PAL) gene family in cotton. Cott Sci, 2021, 33(1): 66-74 (in Chinese with English abstract).
[33] 孙润泽, 张雪, 成果, 李强, 朱燕溶, 陈武, 潘秋红, 段长青, 王军. 葡萄苯丙氨酸解氨酶基因家族的全基因组鉴定及表达分析. 植物生理学报, 2016, 52: 195-208.
Sun R Z, Zhang X, Cheng G, Li Q, Zhu Y R, Chen W, Pan Q H, Duan C Q, Wang J. Genome-wide characterization and expression analysis of the phenylalanine ammonia-lyase gene family in grapevine (Vitis vinifera L.). Acta Phytophysiol Sin, 2016, 52: 195-208 (in Chinese with English abstract).
[34] 吴远航, 刘秦, 刘攀道, 郭鹏飞, 李敏, 蒋凌雁, 罗丽娟. 木薯苯丙氨酸解氨酶基因的克隆及其对低温胁迫的响应. 热带作物学报, 2019, 40: 483-489.
Wu Y H, Liu Q, Liu P D, Guo P F, Li M, Jiang L Y, Luo L J. Cloning of cassava phenylalanine ammonia lyase genes and their responses to low temperature stress. Chin J Trop Crops, 2019, 40: 483-489 (in Chinese with English abstract).
[35] Liu Z, Li Y M, Zhu J Y, Ma W J, Li Z T, Bi Z Z, Sun C, Bai J P, Zhang J L, Liu Y H. Genome-wide identification and analysis of the NF-Y gene family in potato (Solanum tuberosum L.). Front Genet, 2021, 12: e739989.
[36] Wong J H, Namasivayam P, Abdullah M P. The PAL2 promoter activities in relation to structural development and adaptation in Arabidopsis thaliana. Planta, 2012, 235: 267-277.
doi: 10.1007/s00425-011-1506-9
[37] Gasteiger E, Hoogland C, Gattiker A, Duvaud S E, Wilkins M R, Appel R D, Bairoch A. Protein identification and analysis tools on the ExPASy server. In: Walker J M, eds. The Proteomics Protocols Handbook. Totowa, NJ: Humana Press, 2005. pp 571-607.
[38] Yu C S, Chen Y C, Lu C H, Hwang J K. Prediction of protein subcellular localization. Proteins, 2006, 64: 643-651.
doi: 10.1002/prot.21018
[39] Reichert A I, He X Z, Dixon R A. Phenylalanine ammonia-lyase (PAL) from tobacco (Nicotiana tabacum): characterization of the four tobacco PAL genes and active heterotetrameric enzymes. Biochem J, 2009, 424: 233-242.
doi: 10.1042/BJ20090620
[40] 曾嘉丽, 欧阳林娟, 刘家林, 贺浩华, 朱昌兰, 彭小松, 贺晓鹏, 傅军如, 陈小荣, 边建民, 徐杰, 孙晓棠, 周大虎, 胡丽芳. 水稻PAL基因的全基因组分析及胁迫表达研究. 基因组学与应用生物学, 2018, 37: 3881-3888.
Zeng J L, Ou-Yang L J, Liu J L, He H H, Zhu C L, Peng X S, He X P, Fu J R, Chen X R, Bian J M, Xu J, Sun X T, Zhou D H, Hu L F. Whole genome analysis and stress expression research of PAL gene in rice. Genomics Appl Biol, 2018, 37: 3881-3888 (in Chinese with English abstract).
[41] 张晨, 臧颖, 许倩, 郑兆娟, 欧阳嘉. 毛果杨苯丙氨酸解氨酶活性比较及肉桂酸制备. 南京林业大学学报(自然科学版), 2020, 44(1): 97-104.
Zhang C, Zang Y, Xu Q, Zhen Z J, Ou-Yang J. Comparison on activities of phenylalanine ammonia-lyase from Populus trichocarpa and its application in trans-cinnamic acid production. J Nanjing For Univ (Nat Sci Edn), 2020, 44(1): 97-104 (in Chinese with English abstract).
[42] 侯鹏, 梁冬, 张卫国, 郭长军, 张小明, 程章, 张淑珍, 李冬梅, 李文滨, 张大勇. 苯丙氨酸解氨酶基因家族在大豆中的时空表达研究. 作物杂志, 2016, (2): 57-62.
Hou P, Liang D, Zhang W G, Gou Z J, Zhang X M, Cheng Z, Zhang S Z, Li W B, Zhang D Y. Study on temporospatial expression of PAL gene family in soybean. Crops, 2016, (2): 57-62 (in Chinese with English abstract).
[43] Hall B G. Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol, 2013, 30: 1229-1235.
doi: 10.1093/molbev/mst012 pmid: 23486614
[44] Bailey T L, Mikael B, Buske F A, Martin F, Grant C E, Luca C, Ren J Y, Li W F, William S N. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res, 2009, 37: W202-W208.
doi: 10.1093/nar/gkp335
[45] 郭安源, 朱其慧, 陈新, 罗静初. GSDS: 基因结构显示系统. 遗传, 2007, 29: 1023-1026.
Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas, 2007, 29: 1023-1026 (in Chinese with English abstract).
[46] Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S. PlantCARE, a database of plant cis- acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327.
[47] Tang X, Zhang N, Si H J, Calderón-Urrea A. Selection and validation of reference genes for RT-qPCR analysis in potato under abiotic stress. Plant Methods, 2017, 13: 85.
doi: 10.1186/s13007-017-0238-7 pmid: 29075311
[48] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[49] Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li R, Wang J. Genome sequence and analysis of the tuber crop potato. Nature, 2011, 475: 189-195.
doi: 10.1038/nature10158
[50] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. Tbtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[51] Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol, 2004, 4: 10.
doi: 10.1186/1471-2229-4-10
[52] Cochrane F C, Davin L B, Lewis N G. The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry, 2004, 65: 1557-1564.
doi: 10.1016/j.phytochem.2004.05.006 pmid: 15276452
[53] Ohl S, Hedrick S A, Chory J, Lamb C J. Functional properties of a phenylalanine ammonia-lyase promoter from Arabidopsis. Plant Cell, 1990, 6: 837-848.
[54] Baucher M, Halpin C, Petit-Conil M, Boerjan W. Lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol, 2003, 38: 305-350.
doi: 10.1080/10409230391036757
[55] Meer I M V D, Stam M E, Tunen A J V, Mol J N M, Stuitje A R. Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell, 1992, 4: 253-262.
doi: 10.1105/tpc.4.3.253 pmid: 1498595
[56] Hahlbrock K, Scheel D. Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol, 1989, 40: 347-369.
doi: 10.1146/arplant.1989.40.issue-1
[57] Dehghan S, Sadeghi M, Pöppel A, Fischer R, Lakes-Harlan R, Kavousi H R, Vilcinskas A, Rahnamaeian M. Differential inductions of phenylalanine ammonia-lyase and chalcone synthase during wounding, salicylic acid treatment, and salinity stress in safflower, Carthamus tinctorius. Biosci Rep, 2014, 34: e00114.
doi: 10.1042/BSR20140026
[58] 宋婕. 丹参苯丙氨酸解氨酶基因 (SmPAL1)的克隆及其功能初探. 陕西师范大学硕士学位论文,陕西西安, 2007.
Song J. Molecular Cloning of a Phenylalanine Ammonia-lyase Gene (SmPALl) from Salvia miltiorrhiza and the Primary Study on Its Function. MS Thesis of Shaanxi Normal University, Xi’an, Shaanxi, China, 2007 (in Chinese with English abstract).
[59] Ritter H, Schulz G E. Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Plant Cell, 2004, 16: 3426-3436.
doi: 10.1105/tpc.104.025288 pmid: 15548745
[60] 苏文华, 张光飞, 李秀华, 欧晓昆. 植物药材次生代谢产物的积累与环境的关系. 中草药, 2005, (9): 139-142.
Su W H, Zhang G F, Li X H, Ou X K. Relationship between accumulation of secondary metabolism in medicinal plant and envi ronmental condition. Chin Tradit Herbal Drugs, 2005, (9): 139-142 (in Chinese with English abstract).
[61] Sun M Y, Gu X D, Fu H W, Zhang L, Chen R Z, Cui L, Zheng L H, Zhang D W, Tian J K. Change of secondary metabolites in leaves of Ginkgo biloba L. in response to UV-B induction. Innov Food Sci Emerg, 2010, 11: 672-676.
doi: 10.1016/j.ifset.2010.08.006
[62] Shin Y, Liu R H, Nock J F, Holliday D, Watkins C B. Temperature and relative humidity effects on quality, total ascorbic acid, phenolics and flavonoid concentrations, and antioxidant activity of strawberry. Postharvest Biol Technol, 2007, 45: 349-357.
doi: 10.1016/j.postharvbio.2007.03.007
[63] Solar A, Colarič M, Usenik V, Stampar F. Seasonal variations of selectedflavonoids, phenolic acids and quinones in annual shoots of commonwalnut (Juglans regia L). Plant Sci, 2006, 170: 453-461.
doi: 10.1016/j.plantsci.2005.09.012
[64] Agrawal A A. Macroevolution of plant defense strategies. Trends Ecol Evol, 2007, 22: 103-109.
pmid: 17097760
[65] 顾永华, 冯煦, 夏冰. 水分胁迫对茅苍术根茎生长及挥发油含量的影响. 植物资源与环境学报, 2008, 17(3): 23-27.
Gu Y H, Feng X, Xia B. Effect of water stress on growth and essential oil content of Atractylodes lancea rhizome. J Plant Resour Environ, 2008, 17(3): 23-27 (in Chinese with English abstract).
[66] 郭伟, 于立河. 盐碱胁迫对小麦幼苗根系活力和苯丙氨酸解氨酶活性的影响. 作物杂志, 2012, (1): 31-34.
Gou W, Yu L H. Effects of salinity-alkalinity stress on root activity and phenylalanine ammonia-lyase activity of wheat seedlings. Crops, 2012, (1): 31-34 (in Chinese with English abstract).
[67] Chen J Y, He L H, Jiang Y M, Wang Y, Joyce D C, Ji Z L, Lu W J. Role of phenylalanine ammonia-lyase in heat pretreatment- induced chilling tolerance in banana fruit. Physiol Planta, 2010, 132: 318-328.
doi: 10.1111/ppl.2008.132.issue-3
[68] Chen X J, Wang P J, Gu M Y, Hou B H, Zhang C R, Zheng Y C, Sun Y, Jin S, Ye N X. Identification of PAL genes related to anthocyanin synthesis in tea plants and its correlation with anthocyanin content. Acta Hortic Sin, 2022, 8: 381-394.
[69] Gómez-Martínez H, Gil-Muñoz F, Bermejo A, Zuriaga E, Badenes M L. Insights of phenolic pathway in fruits: transcriptional and metabolic profiling in apricot (Prunus armeniaca). Int J Mol Sci, 2021, 22: 3411.
doi: 10.3390/ijms22073411
[70] 李云萍, 郭晋雅, 高峰. 紫心甘薯花青素积累与PAL活性的关系. 西南大学学报(自然科学版), 2010, 32(2): 68-72.
Li Y P, Guo J Y, Gao F. The relationship between anthocyanidin acumulation and phenylalnine ammonialyase activity in purple- fleshed sweet potato [Ipomoea batatas (L.)Lam.]. J Southwest Univ (Nat Sci Edn), 2010, 32(2): 68-72 (in Chinese with English abstract).
[1] 刘洁, 蔡诚诚, 刘石锋, 邓孟胜, 王雪枫, 温和, 李罗品, 严奉君, 王西瑶. 马铃薯StCYP85A3促进萌芽及根系伸长的功能解析[J]. 作物学报, 2023, 49(9): 2462-2471.
[2] 代书桃, 朱灿灿, 马小倩, 秦娜, 宋迎辉, 魏昕, 王春义, 李君霞. 谷子HAK/KUP/KT钾转运蛋白家族全基因组鉴定及其对低钾和高盐胁迫的响应[J]. 作物学报, 2023, 49(8): 2105-2121.
[3] 文利超, 熊涛, 邓智超, 刘涛, 郭存, 李伟, 郭永峰. 烟草转录因子NtNAC080在非生物胁迫下的表达分析及功能鉴定[J]. 作物学报, 2023, 49(8): 2171-2182.
[4] 赵喜娟, 刘圣宣, 刘腾飞, 郑洁, 杜鹃, 胡新喜, 宋波涛, 何长征. 转录组分析揭示光诱导转录因子StMYB113调控马铃薯块茎表皮叶绿素合成[J]. 作物学报, 2023, 49(7): 1860-1870.
[5] 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784.
[6] 索海翠, 刘计涛, 王丽, 李成晨, 单建伟, 李小波. 马铃薯锌转运蛋白基因StZIP12调控锌吸收功能[J]. 作物学报, 2023, 49(7): 1994-2001.
[7] 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725.
[8] 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495.
[9] 贾玉库, 高宏欢, 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云. 小麦G2-like转录因子家族基因鉴定与表达模式分析[J]. 作物学报, 2023, 49(5): 1410-1425.
[10] 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954.
[11] 李红艳, 李洁雅, 李响, 叶广继, 周云, 王舰. 过表达LrAN2基因对马铃薯中花青素和糖苷生物碱含量的影响[J]. 作物学报, 2023, 49(4): 988-995.
[12] 张卫娜, 余慧芳, 安珍, 柳文凯, 康益晨, 石铭福, 杨昕宇, 张茹艳, 王勇, 秦舒浩. StEFR1正调控马铃薯对晚疫病的抗性[J]. 作物学报, 2023, 49(4): 996-1005.
[13] 周宾寒, 杨竹, 王书平, 方正武, 胡赞民, 徐兆师, 张迎新. 小麦幼苗活性LTR反转录转座子筛选及其对非生物胁迫的响应[J]. 作物学报, 2023, 49(4): 966-977.
[14] 徐子寅, 于晓玲, 邹良平, 赵平娟, 李文彬, 耿梦婷, 阮孟斌. 木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选[J]. 作物学报, 2023, 49(4): 955-965.
[15] 王硕, 鲍天旸, 刘建刚, 段绍光, 简银巧, 李广存, 金黎平, 徐建飞. 基于RGB颜色空间评价马铃薯块茎绿化程度[J]. 作物学报, 2023, 49(4): 1102-1110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .