欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (10): 1506-1516.doi: 10.3724/SP.J.1006.2018.01506

• 耕作栽培·生理生化 • 上一篇    下一篇

不同粒色小麦籽粒铁锌含量和生物有效性及其对氮磷肥的响应

黄鑫1,李耀光1,孙婉1,侯俊峰1,马英1,张剑2,马冬云1,3,*(),王晨阳1,3,郭天财1   

  1. 1 河南农业大学农学院 / 国家小麦工程技术研究中心, 河南郑州 450046
    2 河南农业大学食品科技学院, 河南郑州 450046
    3 河南农业大学/省部共建小麦玉米作物学国家重点实验室, 河南郑州 450046
  • 收稿日期:2018-01-30 接受日期:2018-07-20 出版日期:2018-10-10 网络出版日期:2018-08-02
  • 通讯作者: 马冬云
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0300400);河南省自然科学基金项目(162300410137)

Variation of Grain Iron and Zinc Contents and Their Bioavailability of Wheat Cultivars with Different-colored Grains under Combined Nitrogen and Phosphorus Fertilization

Xin HUANG1,Yao-Guang LI1,Wan SUN1,Jun-Feng HOU1,Ying MA1,Jian ZHANG2,Dong-Yun MA1,3,*(),Chen-Yang WANG1,3,Tian-Cai GUO1   

  1. 1 Agronomy College / National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, Henan, China
    2 Food and Science Technology College, Henan Agricultural University, Zhengzhou 450046, Henan, China
    3 The National Key Laboratory of Wheat and Maize Crop Science / Henan Agricultural University, Zhengzhou 450046, Henan, China
  • Received:2018-01-30 Accepted:2018-07-20 Published:2018-10-10 Published online:2018-08-02
  • Contact: Dong-Yun MA
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0300400);the Natural Science Foundation of Henan Province(162300410137)

摘要:

明确不同粒色小麦籽粒铁锌含量和生物有效性及其对氮磷肥配施的响应, 对小麦高产优质高效生产具有重要意义。本文以6个不同粒色(白粒、红粒和黑粒)小麦品种为材料, 在大田条件下研究了不同氮磷肥配比(N1: 90 kg N hm -2; N2: 240 kg N hm -2; P1: 60 kg P2O5 hm -2; P2: 209 kg P2O5 hm -2)对小麦产量、籽粒铁锌含量及其生物有效性的影响。结果表明, 不同品种籽粒铁锌含量和积累量存在年际间差异, 黑粒小麦具有较高的铁锌生物有效性。小麦籽粒产量、铁锌含量及积累量在N2P1处理下最高; 铁锌生物有效性在N2P2或N2P1处理下最高, 两处理之间没有显著差异。红粒小麦扬麦15和扬麦22在N2P1水平下籽粒铁锌含量及其积累量最高, N2P2次之; 黑粒小麦周黑麦1号和紫麦1号在N2P2水平下铁含量及其积累量最高, N2P1次之; 不同品种的铁锌生物有效性多数在N2P1或N2P2水平下最高, 表明适量增施氮肥, 有利于提高籽粒产量、铁锌含量及其生物有效性。在本试验条件下综合考虑产量和效率, N2P1 (240 kg N hm -2、60 kg P2O5 hm -2)处理对提高产量、增加籽粒铁锌含量及其生物有效性效果最佳。

关键词: 小麦, 氮磷配施, 籽粒产量, 铁锌含量, 生物有效性

Abstract:

Six wheat cultivars with different-colored grains (white, red, and black) were used to investigate effects of combined N (N1: 90 kg N ha-1; N2: 240 kg N ha-1) and P (P1: 60 kg P2O5 ha-1; P2: 209 kg P2O5 ha-1) fertilization on grain yield, Fe and Zn contents and accumulation in grain, and their bioavailability in a two-year field experiment. Black-grain cultivars had a higher average Fe and Zn bioavailability than the red- and white-grain cultivars. Meanwhile, there were inter-annual differences in Fe and Zn contents and accumulation in grains among different wheat cultivars. Maximum grain yield, Fe and Zn contents and accumulation were observed under N2P1 treatment, while highest Fe and Zn bioavailability were observed under N2P2 or N2P1 treatment. Red-grain cultivars Yangmai 15 and Yangmai 22 got the highest Fe and Zn contents, and accumulation amount under N2P1 treatment. Black-grain cultivars Zhouheimai 1 and Zimai 1 got the highest Fe content and accumulation amount under N2P2 treatment, followed by N2P1. Most cultivars had the highest Fe and Zn bioavailability under N2P1 or N2P2 treatment, which indicated that increasing N application results in a higher grain yield, Fe and Zn contents, and their bioavailability. In this experiment, wheat cultivars would benefit from N2P1 treatment in terms of grain yield, Fe and Zn contents, and their bioavailability.

Key words: wheat, nitrogen and phosphorus combinations, grain yield, iron and zinc contents, bioavailability

附表1

不同品种在2014和2015年度生育时期"

品种
Cultivar
播期
Sowing date
(month/day)
开花期
Flowering date
(month/day)
收获期
Harvest date
(month/day)
灌浆期
Grain filling duration
(d)
2013-2014
豫麦49-198 Yumai 49-198 10/16 4/21 5/31 40
郑麦366 Zhengmai 366 10/16 4/18 5/29 41
扬麦15 Yangmai 15 10/23 4/18 5/29 41
扬麦22 Yangmai 22 10/23 4/18 5/29 41
周黑麦1号 Zhouheimai 1 10/16 4/21 5/31 40
紫麦1号 Zimai 1 10/16 4/21 5/31 40
2014-2015
豫麦49-198 Yumai 49-198 10/15 4/29 6/3 35
郑麦366 Zhengmai 366 10/15 4/25 5/31 36
扬麦15 Yangmai 15 10/22 4/25 5/31 36
扬麦22 Yangmai 22 10/22 4/25 5/31 36
周黑麦1号 Zhouheimai 1 10/15 4/29 6/3 35
紫麦1号 Zimai 1 10/15 4/29 6/3 35

附表2

产量及籽粒铁锌含量方差分析(均方)"

变异来源
Source
穗数
Spike number
穗粒数
GNS
千粒重
TKW
产量
Yield
铁含量
Fe content
锌含量
Zn content
植酸/铁
PA/Fe
植酸/锌
PA/Zn
年份 Year (Y) 1944.0 350.7* 476.8* 7812861.2* 6070.5** 108.9** 0.3 923.4**
肥料 Fertilization (F) 54607.7* 246.4* 41.6* 6809056.7* 1519.0** 430.6** 61.3** 1102.7**
品种 Cultivar (C) 28771.5* 1119.2* 202.1* 1434103.0* 400.9* 45.2** 40.8** 59.4**
F×Y 12702.4* 54.9 28.7* 612532.7 2017.9** 263.7** 16.9 171.7**
Y×C 13975.0* 54.2 15.0* 674687.9* 337.9* 26.1 7.6** 75.6**
F×C 17702.2 359.3 10.4* 346523.7 479.7** 42.9** 7.6** 23.6**
F×Y×C 45591.5* 314.9 10.0* 456607.8 266.0* 64.6** 6.7 46.9**

表1

不同粒色小麦籽粒产量及其构成因素"

类型
Type
品种
Cultivar
穗数
SN (×104 hm-2)
穗粒数
GNS
千粒重
TKW (g)
产量
Yield (kg hm-2)
2013-2014
白粒
White-grain
豫麦49-198 Yumai 49-198 585 ab 26 b 50.1 a 6875 a
郑麦366 Zhengmai 366 620 a 36 a 41.9 bc 7229 a
红粒
Red-grain
扬麦15 Yangmai 15 518 ab 36 a 50.3 a 6958 a
扬麦22 Yangmai 22 481 b 39 a 44.0 b 6854 a
黑粒
Black-grain
周黑麦1号 Zhouheimai 1 503 b 37 a 41.1 c 7118 a
紫麦1号 Zimai 1 498 b 37 a 43.9 b 6618 a
2014-2015
白粒
White-grain
豫麦49-198 Yumai 49-198 619 a 33 b 45.9 a 6402 ab
郑麦366 Zhengmai 366 559 bc 40 a 40.6 c 6716 a
红粒
Red-grain
扬麦15 Yangmai 15 510 d 39 a 43.0 b 6889 a
扬麦22 Yangmai 22 600 ab 41 a 39.0 c 6586 a
黑粒
Black-grain
周黑麦1号 Zhouheimai 1 526 cd 42 a 36.4 d 5954 cb
紫麦1号 Zimai 1 510 d 39 a 39.8 c 5679 c
2年平均 Average of two years
白粒
White-grain
豫麦49-198 Yumai 49-198 602 a 30 b 48.0 a 6639 ab
郑麦366 Zhengmai 366 590 a 38 a 41.3 b 6973 a
红粒
Red-grain
扬麦15 Yangmai 15 514 b 38 a 46.7 a 6924 a
扬麦22 Yangmai 22 541 ab 40 a 41.5 b 6720 ab
黑粒
Black-grain
周黑麦1号 Zhouheimai 1 515 b 40 a 38.8 c 6536 ab
紫麦1号 Zimai 1 504 b 38 a 41.9 b 6149 b

表2

氮磷肥配施对小麦产量及其构成因素的影响"

年份
Year
处理
Treatment
穗数
SN (×104 hm-2)
穗粒数
GNS
千粒重
TKW (g)
产量
Yield (kg hm-2)
2013-2014 N1P1 518 bc 37 a 45.0 bc 6625 b
N2P1 560 ab 38 a 45.3 ab 7565 a
N1P2 478 c 36 a 46.4 a 6620 b
N2P2 581 a 36 a 44.2 c 6958 b
2014-2015 N1P1 459 c 39 a 39.0 c 5586 d
N2P1 645 a 41 a 43.7 a 7100 a
N1P2 510 b 36 b 41.5 b 6163 c
N2P2 602 a 40 a 39.0 c 6638 b
2年平均 N1P1 489 b 38 ab 42.0 a 6106 c
Average N2P1 603 a 40 a 44.5 a 7333 a
of two years N1P2 494 b 36 b 44.0 a 6392 c
N2P2 592 a 38 ab 41.6 a 6798 b

表3

不同粒色小麦籽粒铁锌含量及积累量"

类型
Type
品种
Cultivar
铁含量
Fe content
(mg kg-1)
锌含量
Zn content
(mg kg-1)
铁积累量
Fe accumulation
(g hm-2)
锌积累量
Zn accumulation
(g hm-2)
2013-2014
白粒
White-grain
豫麦49-198 Yumai 49-198 51.9 b 33.4 c 361.5 b 233.4 b
郑麦366 Zhengmai 366 53.0 b 34.0 bc 385.9 b 245.5 ab
红粒
Red-grain
扬麦15 Yangmai 15 51.6 b 35.2 ab 361.3 b 247.1 ab
扬麦22 Yangmai 22 54.8 b 33.5 c 378.2 b 229.5 b
黑粒
Black-grain
周黑麦1号 Zhouheimai 1 55.0 b 36.5 a 391.3 b 259.5 a
紫麦1号 Zimai 1 63.7 a 35.6 ab 421.8 a 235.3 b
2014-2015
白粒
White-grain
豫麦49-198 Yumai 49-198 48.7 b 36.6 ab 313.7 abc 234.9 a
郑麦366 Zhengmai 366 49.5 a 35.2 ab 336.2 a 239.5 a
红粒
Red-grain
扬麦15 Yangmai 15 48.2 b 35.0 ab 336.3 ab 242.5 a
扬麦22 Yangmai 22 43.1 c 33.8 b 288.3 cd 227.9 a
黑粒
Black-grain
周黑麦1号 Zhouheimai 1 50.9 a 35.1 ab 306.9 bcd 213.7 a
紫麦1号 Zimai 1 48.5 bc 38.5 a 278.1 d 216.2 a
2年平均 Average of two years
白粒
White-grain
豫麦49-198 Yumai 49-198 50.3 c 35.0 ab 337.6 a 234.2 a
郑麦366 Zhengmai 366 51.3 bc 34.6 ab 361.1 a 242.5 a
红粒
Red-grain
扬麦15 Yangmai 15 49.9 c 35.1 ab 348.8 a 244.8 a
扬麦22 Yangmai 22 49.0 c 33.7 b 333.3 a 228.7 a
黑粒
Black-grain
周黑麦1号 Zhouheimai 1 53.0 b 35.8 ab 349.1 a 236.6 a
紫麦1号 Zimai 1 56.1 a 37.1 a 350.0 a 225.8 a

表4

氮磷肥配施对籽粒铁锌含量及积累量的影响"

年份
Year
处理
Treatment
铁含量
Fe content (mg kg-1)
锌含量
Zn content (mg kg-1)
铁积累量
Fe accumulation (g hm-2)
锌积累量
Zn accumulation (g hm-2)
2013-2014 N1P1 42.5 b 33.4 bc 282.4 c 222.0 bc
N2P1 60.1 a 39.2 a 454.2 a 296.1 a
N1P2 56.3 a 30.7 d 371.9 b 203.0 c
N2P2 61.2 a 35.5 b 425.9 ab 246.4 b
2014-2015 N1P1 39.3 b 31.9 b 219.0 c 177.2 b
N2P1 54.5 a 40.5 a 388.9 a 287.2 a
N1P2 46.5 ab 30.3 b 289.4 bc 187.9 b
N2P2 51.5 a 40.5 a 341.1 ab 264.0 a
2年平均 N1P1 40.9 c 32.7 b 250.0 c 199.6 c
Average N2P1 57.3 a 39.9 a 421.6 a 291.7 a
of two years N1P2 51.4 b 30.5 b 330.7 b 195.5 c
N2P2 56.4 ab 38.0 a 383.5 a 255.2 b

附表3

氮磷肥配施条件下小麦籽粒铁、锌含量和积累量及其生物有效性"

品种类型
Cultivar
type
品种名称
Cultivar
name
处理
Treatment
铁含量
Fe content
(mg kg-1)
锌含量
Zn content
(mg kg-1)
铁积累量
Fe accumulation
(g hm-2)
锌积累量
Zn accumulation
(g hm-2)
植酸/铁
PA/Fe
植酸/锌
PA/Zn
2013-2014
白粒 豫麦49-198 N1P1 38.13 b 27.26 d 226.7 b 162.0 c 33.96 a 55.13 a
White-grain Yumai 49-198 N2P1 57.12 a 40.43 a 463.3 a 327.9 a 28.92 b 47.43 ab
N1P2 56.15 a 31.29 cd 365.0 a 203.4 bc 26.63 bc 55.47 a
N2P2 56.31 a 34.58 b 391.0 a 240.1 b 24.02 c 45.40 b
郑麦366 N1P1 37.68 b 36.49 b 257.5 c 249.3 bc 34.36 a 41.19 c
Zhengmai 366 N2P1 58.90 a 38.90 a 476.1 a 314.4 a 25.52 bc 44.85 c
N1P2 52.88 a 27.43 d 354.0 bc 183.6 c 27.22 b 60.92 a
N2P2 62.42 a 33.03 c 456.0 ab 241.3 bc 23.62 c 51.80 b
红粒 扬麦15 N1P1 49.49 b 31.85 c 342.3 b 220.3 c 29.76 b 53.68 a
Red-grain Yangmai 15 N2P1 68.24 a 39.03 a 494.7 a 282.9 a 22.66 c 44.95 b
N1P2 43.45 b 32.49 c 288.5 b 215.7 c 32.70 a 50.76 a
N2P2 45.47 b 37.41 b 319.5 b 262.9 b 32.07 a 45.24 b
扬麦22 N1P1 40.94 b 31.32 c 265.0 c 202.7 b 30.24 a 45.90 b
Yangmai 22 N2P1 60.04 a 36.74 a 475.9 a 288.8 a 20.81 d 39.81 c
N1P2 58.85 a 27.92 d 415.2 ab 197.0 b 26.80 b 65.58 a
N2P2 59.19 a 37.94 a 356.8 b 228.7 b 25.39 bc 45.99 b
黑粒 周黑麦1号 N1P1 46.28 c 36.53 b 334.2 c 263.8 a 32.09 a 47.18 a
Black-grain Zhouheimai 1 N2P1 52.35 b 39.46 a 362.0 b 272.9 a 24.69 b 38.02 b
N1P2 55.69 b 35.58 bc 374.4 b 239.2 a 22.9 bc 41.60 ab
N2P2 60.55 a 34.23 c 498.9 a 260.5 a 19.21 c 42.70 ab
紫麦1号 N1P1 42.27 b 36.76 bc 268.9 c 233.8 ab 32.74 a 43.70 b
Zimai 1 N2P1 63.66 a 40.39 a 456.2 ab 289.5 a 21.73 b 39.76 bc
N1P2 71.04 a 29.28 c 434.1 b 178.9 b 18.99 bc 53.49 a
N2P2 77.98 a 35.84 bc 532.9 a 244.9 ab 16.29 c 41.15 b
品种类型
Cultivar
type
品种名称
Cultivar
name
处理
Treatment
铁含量
Fe content
(mg kg-1)
锌含量
Zn content
(mg kg-1)
铁积累量
Fe accumulation
(g hm-2)
锌积累量
Zn accumulation
(g hm-2)
植酸/铁
PA/Fe
植酸/锌
PA/Zn
2014-2015
白粒 豫麦49-198 N1P1 35.99 b 31.66 a 215.2 b 189.2 a 34.33 a 45.29 a
White-grain Yumai 49-198 N2P1 49.79 a 40.68 a 328.6 a 268.5 a 23.69 c 33.65 bc
N1P2 51.65 a 35.07 a 329.1 a 223.4 a 25.51 bc 43.61 a
N2P2 57.34 a 38.99 a 381.7 a 259.0 a 17.33 d 29.58 c
郑麦366 N1P1 40.12 b 29.16 a 231.4 b 168.6 b 32.38 a 51.71 a
Zhengmai 366 N2P1 54.13 ab 40.04 a 391.3 a 289.3 a 20.94 c 32.86 b
N1P2 48.11 ab 32.63 a 306.6 ab 208.0 ab 26.14 bc 44.73 ab
N2P2 55.48 a 38.93 a 415.3 a 291.2 a 20.08 d 33.22 b
红粒 扬麦15 N1P1 41.11 b 30.81 b 272.9 b 204.5 b 31.35 a 48.56 a
Red-grain Yangmai 15 N2P1 68.88 a 41.33 a 511.3 a 306.8 a 18.10 b 35.03 b
N1P2 46.92 ab 31.17 b 326.7 b 217.0 b 29.54 ba 51.63 a
N2P2 35.89 b 37.48 ab 234.5 b 244.9 ab 32.36 a 35.97 b
扬麦22 N1P1 38.03 b 31.43 b 218.0 c 180.2 b 32.61 a 45.81 a
Yangmai 22 N2P1 55.16 a 39.37 a 425.6 a 303.7 a 21.28 c 34.62 b
N1P2 39.06 b 29.19 b 240.2 b 179.5 b 31.88 a 49.53 a
N2P2 39.94 b 36.81 ab 269.6 b 248.4 ab 26.74 c 33.68 b
黑粒 周黑麦1号 N1P1 40.68 c 36.64 a 197.1 c 177.5 b 32.62 a 42.04 ab
Black-grain Zhouheimai 1 N2P1 50.24 b 38.53 a 339.7 ab 260.5 a 23.93 c 36.22 b
N1P2 52.62 b 27.68 b 319.8 b 168.2 b 23.74 b 52.37 a
N2P2 59.95 a 37.34 a 367.7 a 229.0 ab 18.04 c 33.63 b
紫麦1号 N1P1 42.01 c 31.75 c 181.5 b 144.0 b 31.89 a 46.65 a
Zimai 1 N2P1 48.98 b 42.81 b 336.7 a 294.3 a 21.48 c 28.52 b
N1P2 42.86 bc 26.0 8c 216.2 b 131.5 b 27.57 ab 52.60 a
N2P2 60.30 a 53.46 a 377.71 a 294.9 a 17.52 c 22.94 b

表5

不同粒色小麦籽粒铁锌生物有效性"

类型
Type
品种
Cultivar
2014 2015 2年平均Average of two years
植酸/铁
PA /Fe
植酸/锌
PA/Zn
植酸/铁
PA/Fe
植酸/锌
PA/Zn
植酸/铁
PA /Fe
植酸/锌PA/Zn
白粒
White-grain
豫麦49-198 Yumai 49-198 28.38 b 50.85 a 25.21 b 38.03 b 26.80 ab 44.44 a
郑麦366 Zhengmai 366 27.68 b 49.68 ab 24.88 c 40.62 a 26.28 b 45.15 a
红粒
Red-grain
扬麦15 Yangmai 15 29.29 a 48.65 b 27.84 ab 42.79 a 28.57 a 45.72 a
扬麦22 Yangmai 22 25.81 b 49.32 ab 28.13 a 40.91 a 26.97 ab 45.12 a
黑粒
Black-grain
周黑麦1号Zhouheimai 1 24.72 c 42.37 d 24.58 b 41.06 a 24.65 c 41.72 b
紫麦1号Zimai 1 22.43 d 44.52 c 24.62 c 37.67 b 23.53 c 41.10 b

表6

氮磷肥配施对籽粒铁锌生物有效性的影响"

处理
Treatment
2014 2015 2年平均Average of two years
植酸/铁
PA /Fe
植酸/锌
PA/Zn
植酸/铁
PA /Fe
植酸/锌
PA/Zn
植酸/铁
PA /Fe
植酸/锌
PA/Zn
N1P1 32.19a 47.79 bc 32.53 a 46.67 b 32.36 a 47.23 a
N2P1 24.06 c 42.47d 21.72 c 33.48 c 22.89 c 37.98 b
N1P2 25.88 b 54.63 a 27.39 b 49.07 a 26.64 b 51.85 a
N2P2 23.73 c 45.38 cd 21.01 c 31.50 c 22.37 c 38.44 b
[1] 杨莉琳, 刘小京, 徐进, 毛任钊 . 小麦籽粒微量元素含量的研究进展. 麦类作物学报, 2008,28:1113-1117
Yang L L, Liu X J, Xu J, Mao R Z . Progress in research of micronutrients content in wheat grain. J Trit Crops, 2008,28:1113-1117 (in Chinese with English abstract)
[2] Cakmak I . Enrichment of cereal grain with zinc: agronomic or genetic biofortification. Plant Soil, 2008,302:1-17
doi: 10.1007/s11104-007-9466-3
[3] Cakmak I . Enrichment of fertilizers with zinc: an excellent investment for humanity and crop production in India. J Trace Elem Med Biol, 2009,23:28l-289
[4] Zhou J R, Erdman J W . Phytic acid in health and disease. Crit Rev Food Sci, 1995,35:495-508
doi: 10.1080/10408399509527712 pmid: 8777015
[5] Cakmak I, Pfeiffer W H, McClafferty B . Biofortification of durum wheat with zinc and iron. Cereal Chem, 2010,87:10-20
doi: 10.1094/CCHEM-87-1-0010
[6] Cakmak I, Torun A, Millet E, Feldman M, Fahima T, Korol A, Nevo E, Braun H J, Ozkan H . Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci Plant Nutr, 2004,50:1047-1054
[7] Salunke R, Neelam K, Rawat N, Tiwari V K, Dhaliwal H S, Roy P . Bioavailability of iron from wheat aegilops derivatives selected for high grain iron and protein contents. J Agric Food Chem, 2011,59:7465-7473
doi: 10.1021/jf2008277
[8] 郝志, 田纪春, 姜小苓 . 小麦主要亲缘种籽粒的Fe、Zn、Cu、Mn含量及其聚类分析. 作物学报, 2007,33:1834-1839
doi: 10.3321/j.issn:0496-3490.2007.11.015
Hao Z, Tian J C, Jiang X L . Analyses of Fe, Zn, Cu and Mn contents in grains and grouping basesd on contents for main kindred germplasm of common wheat (Triticum aestivum). Acta Agron Sin, 2007,33:1834-1839 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2007.11.015
[9] Cakmak I, Kalayci M, Kaya Y, Torun A A, Aydin N, Wan G Y, Arisoy Z, Erdem H, Yazici A, Gokmen O, Ozturk L, Horst W J . Biofortification and localization of zinc in wheat grain. J Agric Food Chem, 2010,58:9092-9102
doi: 10.1021/jf101197h pmid: 23654236
[10] Kutman U B, Yildiz B, Ozturk L, Cakmak I . Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chem, 2010,87:1-9
doi: 10.1094/CCHEM-87-1-0001
[11] 曹玉贤, 田霄鸿, 杨习文, 陆欣春, 陈辉林, 南雄雄, 李秀丽 . 土施和喷施锌肥对冬小麦子粒锌含量及生物有效性的影响. 植物营养与肥料学报, 2010,16:1394-1401
doi: 10.11674/zwyf.2010.0614
Cao Y X, Tian X H, Yang X W, Lu X C, Chen H L, Nan X X, Li X L . Effects of soil and foliar applications of Zn on winter wheat grain Zn concentration and bioavailability. Plant Nutr Fert Sci, 2010,16:1394-1401 (in Chinese with English abstract)
doi: 10.11674/zwyf.2010.0614
[12] 左毅, 马冬云, 王晨阳, 朱云集, 刘骏, 郭天财 . 花后叶面喷施氮肥和锌肥对小麦粒重及营养品质的影响. 麦类作物学报, 2013,33:123-128
doi: 10.7606/j.issn.1009-1041.2013.01.021
Zuo Y, Ma D Y, Wang C Y, Zhu Y J, Liu J, Guo T C . Effects of spraying nitrogen and zinc fertilizers after flowering on grain weight and nutritional quality of winter wheat. J Trit Crops, 2013,33:123-128 (in Chinese with English abstract)
doi: 10.7606/j.issn.1009-1041.2013.01.021
[13] Kutman U B, Yildiz B, Cakmak I . Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. J Cereal Sci, 2011,53:118-125
doi: 10.1016/j.jcs.2010.10.006
[14] 常旭虹, 赵广才, 王德梅, 杨玉双, 马少康, 李振华, 李辉利, 贾二红, 陈枫 . 生态环境与施氮量协同对小麦籽粒微量元素含量的影响. 植物营养与肥料学报, 2014,20:885-895
Chang X H, Zhao G C, Wang D M, Yang Y S, Ma S K, Li Z H, Li H L, Jia E H, Chen F . Effects of ecological environment and nitrogen application rate on microelement contents of wheat grain. Plant Nutr Fert Sci, 2014, 20:885-895 (in Chinese with English abstract)
[15] Webb M J, Loneragan J F . Zinc translocation to wheat roots and its implications for a phosphorus/zinc interaction in wheat plants. Plant Nutr, 1990,13:1499-1512
doi: 10.1080/01904169009364171
[16] Ryan M H, McLnerney J K, Record I R, Angus J F . Zinc bioavailability in wheat grain in relation to phosphorus fertilizer, crop sequence and mycorrhizal fungi. J Sci Food Agric, 2008,88:1208-1216
doi: 10.1002/(ISSN)1097-0010
[17] 买文选, 田霄鸿, 陆欣春, 杨习文 . 磷锌肥配施对冬小麦籽粒锌生物有效性的影响. 中国生态农业学报, 2011,19:1243-1249
Mai W X, Tian X H, Lu X C, Yang X W . Effect of Zn and P supply on grain Zn bioavailability in wheat. Chin J Eco-Agric, 2011,19:1243-1249 (in Chinese with English abstract)
[18] Zhang M W, Ma D Y, Wang CH Y , et al. Responses of amino acid composition to nitrogen application in high- and low-protein wheat cultivars at two planting environments. Crop Sci, 2015,56:1-11
[19] 张德奇, 季书勤, 王汉芳, 李向东, 吕凤荣, 郭瑞 . 弱筋小麦郑麦004的氮、磷肥运筹模式研究. 河南农业科学, 2011,40(2):50-53
Zhang D Q, Ji S Q, Wang H F, Li X D, Lyu F R, Guo R . Research on N and P fertilizer application mode of weak gluten wheat Zhengmai 004. J Henan Agric Sci, 2011,40(2):50-53 (in Chinese with English abstract)
[20] 朱统泉, 吴大付, 金艳 . 豫中南地区优质强筋小麦产量和品质的适宜氮磷配比研究. 中国土壤与肥料, 2014, ( 4):57-60
Zhu T Q, Wu D F, Jin Y . Effect of different ratio of nitrogen and phosphorus fertilizer on yield and quality of strong gluten wheat in the south central area of Henan province. J Soil Fert China, 2014, ( 4):57-60 (in Chinese with English abstract)
[21] Li W D, Beta T, Sun S C, Corke H . Protein characteristics of Chinese black-grained wheat. Food Chem, 2006,98:463-472
doi: 10.1016/j.foodchem.2005.06.020
[22] Li Y G, Ma D Y, Sun D X, Wang C Y, Zhang J, Xie Y X, Guo T C . Total phenolic, flavonoid content, and antioxidant activity of flour, noodles, and steamed bread made from different colored wheat grains by three milling methods. Crop J, 2015,3:328-334
doi: 10.1016/j.cj.2015.04.004
[23] Ma D Y, Li Y G, Zhang J, Wang C Y, Qin H X, Ding H N, Xie Y X, Guo T C . Accumulation of phenolic compounds and expression profiles of phenolic acid biosynthesis-related genes in developing grains of white, purple, and red wheat. Front Plant Sci, 2016,7:528
[24] 胡秋辉, 陈历程, 吴莉莉, 曹延松, 程万和 . 黑小麦营养成分分析及其深加工制品前景展望. 食品科学, 2001,22(12):50-52
doi: 10.3321/j.issn:1002-6630.2001.12.013
Hu Q H, Chen L C, Wu L L, Cao Y S, Cheng W H . Analysis of nutritional components of black wheat and prospect of its deep processed products. Food Sci, 2001,22(12):50-52 (in Chinese with English abstract)
doi: 10.3321/j.issn:1002-6630.2001.12.013
[25] 褚西宁, 赵美蓉, 王朝健 . 饲用饼粕中植酸量的快速测定法. 饲料工业, 1997,18(7):42-43
Zhu X N, Zhao M R, Wang Z J . The rapid determination method of the amount of phytic acid in the meal. J Feed Ind, 1997,18(7):42-43 (in Chinese)
[26] 张勇, 王德森, 张艳, 何中虎 . 北方冬麦区小麦品种籽粒主要矿物质元素含量分别及其相关性分析. 中国农业科学, 2007,40:1871-1876
Zhang Y, Wang D S, Zhang Y, He Z H . Variation of major mineral elements concentration and their relationships in grain of Chinese wheat. Sci Agric Sin, 2007,40:1871-1876 (in Chinese with English abstract)
[27] 高向阳, 宋莲军, 王振, 张小军 . 微波消解原子吸收法在南阳彩麦矿质元素测定中的营养. 河南农业大学学报, 2005,39:365-368
Gao X Y, Song L J, Wang Z, Zhang X J . Application of AAS method with microwave digesting sample to the determination of mineral elements in Nanyang color wheat. J Henan Agric Univ, 2005,39:365-368 (in Chinese with English abstract)
[28] 何一哲, 宁军芬 . 高铁锌小麦特异新种质“秦黑1号”的营养成分分析. 西北农林科技大学学报(自然科学版), 2003,31:87-90
doi: 10.3321/j.issn:1671-9387.2003.03.020
He Y Z, Ning J F . Analysis of nutrition composition in the special purple grain wheat “Qinhei 1” containing rich Fe and Zn. J Northweat Sci-Tech Univ For (Nat Sci Edn), 2003,31:87-90 (in Chinese with English abstract)
doi: 10.3321/j.issn:1671-9387.2003.03.020
[29] 郝志, 田纪春, 孙玉, 姜小苓 . 不同粒色小麦籽粒中铁锌铜锰含量及其与种皮色素的相关分析. 中国粮油学报, 2008,23(3):12-17
Hao Z, Tian J C, Sun Y, Jiang X L . Correlation analysis between contents of Cu, Fe, Zn, Mn and pigmentation of testa in different ccolor wheat. J Chin Cereals Oils Assoc, 2008,23(3):12-17 (in Chinese with English abstract)
[30] 苏东民, 齐兵建, 赵仁勇, 林江涛, 李建钊 . 漯珍1号黑小麦营养成分的初步评价. 粮食与饲料工业, 2000, ( 8):1-2
doi: 10.3969/j.issn.1003-6202.2000.08.001
Su D M, Qi B J, Zhao R Y, Lin J T, Li J Z . Evaluation nutritional compositions of black wheat “Luozhen 1”. Cereal Feed Ind, 2000, ( 8):1-2 (in Chinese)
doi: 10.3969/j.issn.1003-6202.2000.08.001
[31] 李峰, 田霄鸿, 陈玲, 李生秀 . 栽培模式、施氮量和播种密度对小麦子粒中Zn、Fe、Mn、Cu含量和携出量的影响. 土壤肥料, 2006, ( 2):42-46
Li F, Tian X H, Chen L, Li S X . Effect of planting model, N fertilization and planting density on concentration and uptake of Zn, Fe, Mn and Cu in grains of winter wheat. Soil Fert, 2006, ( 2):42-46 (in Chinese with English abstract)
[32] 刘美佳, 韩证仿, 杨世佳, 杨冰, 张卫建 . 氮肥用量对苏中冬小麦地上部主要矿质元素含量的影响. 麦类作物学报, 2012,32:728-733
Liu M J, Han Z F, Yang S J, Yang B, Zhang W J . Effects of nitrogen application rates on mineral concentrations in above-ground tissues of winter wheat in center of Jiangsu province. J Trit Crops, 2012,32:728-733 (in Chinese with English abstract)
[33] Erenoglu E B, Kutman U B, Ceylan Y, Yildiz B, Cakmak I . Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc ( 65Zn) in wheat . New Phytologist, 2011,189:438-448
doi: 10.1111/j.1469-8137.2010.03488.x
[34] Syltie P W, Dabnke W C . Mineral and protein content, test weight, and yield variations of hard red spring wheat grain as influenced by fertilization and cultivar. Plant Foods Human Nutr, 2005,32:37-49
[35] 惠晓丽, 王朝辉, 罗来超, 马清霞, 王森, 戴健, 靳静静 . 长期施用氮磷肥对旱地冬小麦籽粒产量和锌含量的影响. 中国农业科学, 2017,50:3175-3185
doi: 10.3864/j.issn.0578-1752.2017.16.012
Hui X L, Wang Z H, Luo L C, Ma Q X, Wang S, Dai J, Jin J J . Winter wheat grain yield and Zn concentration affected by long-term N and P application in dryland. Sci Agric Sin, 2017,50:3175-3185 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.16.012
[36] 郭战玲, 寇长林, 杨占平, 马政华, 骆晓声, 沈阿林 . 潮土区小麦高产与环境友好的磷肥施用量研究. 河南农业科学, 2015,44(2):52-55
Guo Z L, Kou C L, Yang Z P, Ma Z H, Luo X S, Shen A L . Phosphate fertilizer application amount for high yield of wheat and environmental safety in fluvo-aquic soil region. J Henan Agric Sci, 2015,44(2):52-55 (in Chinese with English abstract)
[37] Zhang Y Q, Shi R L, Rezaul K M, Zhang F S, Zou C Q . Iron and zinc concentrations in grain and flour of winter wheat as affected by foliar application. J Agric Food Chem, 2010,58:12268-12274
doi: 10.1021/jf103039k
[38] Lu X C, Tian X H, Cui J, Zhao A Q, Yang X W, Mai W X . Effects of combined phosphorus-zinc fertilization on grain zinc nutritional quality of wheat grown on potentially zinc-deficient calcareous soil.Soil Sci, 176:684-689
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!