欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (3): 721-733.doi: 10.3724/SP.J.1006.2024.31036

• 耕作栽培·生理生化 • 上一篇    下一篇

基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择

赵荣荣2(), 丛楠1,*(), 赵闯2   

  1. 1中国科学院地理科学与资源研究所拉萨高原生态试验站, 北京 100101
    2中国农业大学资源与环境学院, 北京 100193
  • 收稿日期:2023-06-05 接受日期:2023-09-13 出版日期:2024-03-12 网络出版日期:2023-10-09
  • 通讯作者: *丛楠, E-mail: congnan@igsnrr.ac.cn
  • 作者简介:E-mail: 610497240@qq.com
  • 基金资助:
    国家重点研发计划项目(2018YFA0606101);国家自然科学基金青年基金项目(42201032);国家优秀青年科学基金(海外)项目和中央高校基本科研业务费专项(15053348)

Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery

ZHAO Rong-Rong2(), CONG Nan1,*(), ZHAO Chuang2   

  1. 1Plateau Ecosystem Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    2College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
  • Received:2023-06-05 Accepted:2023-09-13 Published:2024-03-12 Published online:2023-10-09
  • Contact: *E-mail: congnan@igsnrr.ac.cn
  • Supported by:
    National Key Research and Development Program of China(2018YFA0606101);National Natural Science Youth Foundation of China(42201032);National Natural Science Fund for Excellent Young Scholars(Overseas), and the Fundamental Research Funds for the Central Universities(15053348)

摘要:

遥感技术对大尺度农业实时监测提供了一个理想的手段, 遥感影像植被分类的最佳时相对作物种植面积遥感监测非常重要。本文选取2020年至2021年的6景Landsat 8影像, 覆盖了夏玉米从乳熟到收获、冬小麦从越冬到成熟的生育期, 以此分析不同时相的冬小麦-夏玉米与其他地类在光谱特征和NDVI上的差异, 通过决策树的方法提取豫中地区冬小麦-夏玉米的空间分布情况。结果表明, 冬小麦-夏玉米在不同生长发育时期, 提取到的面积比有所不同, 对于夏玉米而言, 乳熟时期的提取效果要优于之后的时期, 其在2020年8月26日的总体精度最高, 为83.60%, Kappa系数为0.72, 分类质量很好; 对于冬小麦而言, 最佳识别时期则处于冬小麦的越冬期, 其在2021年1月1日的总体精度最高, 为92.36%, Kappa系数为0.81, 信息提取效果很好。除了作物自身生长过程的覆盖度变化, 分类精度随成像时间而改变。多时相信息提取也发现, 受到天气等环境条件限制, 夏玉米和冬小麦的种植区域不完全重叠, 山区冬季不适合冬小麦种植从而没有与夏玉米出现重叠分布。本研究有助于我们从宏观上对作物分布及生长状况作出及时有效的判断, 对农业监测, 特别是对轮作农田的信息管理和作物物候、种植面积等研究具有广阔的应用前景。

关键词: 冬小麦-夏玉米, 光谱特征, 决策树分类, 分类精度, Landsat 8-OLI遥感影像

Abstract:

Remote sensing technology provides an ideal mean for the real-time monitoring of large-scale agriculture production. And the best phase of remote sensing images for vegetation classification is important to monitor crop area by means of remote sensing. In this study, we selected 6 Landsat 8 images from 2020 to 2021, including the growth period of summer maize from milk ripening to harvest and winter wheat from overwintering to ripening. Based on these data, we analyzed the differences in spectral characteristics and NDVI between winter wheat-summer maize and other landcovers at different phases. Then we extracted the spatial distribution of winter wheat-summer maize by the decision tree in central region of Henan province. The results showed that the area ratio of winter wheat-summer maize changed during growth period. For summer maize, the extraction effect at milky stage was better than that at the later stage, and the overall precision was the highest on August 26th, 2020, accounting for 83.60%, and the Kappa coefficient was 0.72, indicating that the classification quality was good. For winter wheat, the best identification period was in the wintering period, and its overall precision on January 1st, 2021 had the highest of 92.36%, and the Kappa coefficient was 0.81, which suggesting it was good for information extraction. In addition to the coverage change of the crop's own growth process, imaging at different stages also affected the classification accuracy. The multi-temporal information extraction also found that the planting areas of summer maize and winter wheat were not completely overlapped due to the limitation of weather and other environmental conditions. The local weather in the mountainous area was not suitable for winter wheat growth, and it was not consistent with the planting area of summer maize. This study helps us to make timely and effective judgments on crop distribution and growth status at a macro level, and has broad application prospects for agricultural monitoring, especially for information management of rotation farmland and crop phenology and planting area.

Key words: winter wheat-summer maize, spectral characteristics, decision tree, classification accuracy, Landsat 8-OLI remote sensing image

图1

2020年1月1日的研究区影像图"

表1

Landsat 8 的OLI数据参数"

序号
Serial number
波段
Band
波长范围
Wave length (μm)
空间分辨率
Resolution (m)
波段1 Band 1 海岸波段 Coastal 0.433-0.453 30
波段2 Band 2 蓝波段 Blue 0.450-0.515 30
波段3 Band 3 绿波段 Green 0.525-0.600 30
波段4 Band 4 红波段 Red 0.630-0.680 30
波段5 Band 5 近红外波段 NIR 0.845-0.885 30
波段6 Band 6 短波红外 SWIR1 1.560-1.660 30
波段7 Band 7 短波红外 SWIR2 2.100-2.300 30
波段8 Band 8 全色波段 Pan 0.500-0.680 15
波段9 Band 9 卷云波段 Cirrus 1.360-1.390 30

表2

地类解译标志"

地物类型
Land-use type
Landsat 8影像
Landsat 8 image
解译标志
Interpretation indicator
建设用地
Build land
图2-A
Fig. 2-A
图斑亮度高, 颜色为混合亮色, 聚集式成片分布, 纹理结构粗糙。
The color of the spot is mixed bright color with high brightness. It is distributed in clustered patches with rough texture structure.
裸地
Bare land
图2-B
Fig. 2-B
颜色为褐色或黄色, 几何形状明显, 边界清晰, 主要为休耕地。
The color is brown or yellow, with distinct geometric shapes and clear borders. It is mainly fallow land.
水体
Water
图2-C
Fig. 2-C
假彩影像颜色为蓝黑色, 边界清晰, 呈连续条带状, 走势不规则, 拐弯处弧度相对圆滑。
The color of the false color image is blue and black, the boundary is clear and irregular, and the curve of the corner is relatively smooth.
林地
Woodland
图2-D
Fig. 2-D
颜色呈暗红色, 多位于山区, 纹理目视可见明暗对比, 地形起伏造成阴影判读清晰。
The color is dark red, mostly located in mountainous areas. And the contrast between light and shade of the texture can be observed, meanwhile the shadow caused by the terrain can be clearly interpreted.
夏玉米
Summer maize
图2-E
Fig. 2-E
颜色以鲜红色为主, 呈条带状分布, 多位于平坦的区域, 质地相较于冬小麦斑块更加粗糙。
The color is mainly bright red, with banded distribution, mostly located in flat areas. The texture is rougher than that of winter wheat.
冬小麦
Winter wheat
图2-F
Fig. 2-F
冬小麦: 颜色以明亮的红色为主, 相较于夏玉米, 其颜色的饱和度更高, 呈规则的田块状分布, 质地均匀, 纹理更加细腻趋同。
The color is bright red, in regular patches. Compared to summer corn, it has a higher color saturation, displaying a regular field-like distribution. The texture is uniform with finer and more homogeneous patterns.

图2

不同波段组合下的地类Landsat 8影像 A: 2020年8月26日, 真彩色(波段432组合); B: 2020年8月26日, 真彩色(波段432组合); C: 2020年8月26日, 假彩色(波段564组合); D: 2020年8月26日, 标准假彩色(波段543组合); E: 2020年8月26日, 标准假彩色(波段543组合); F: 2021年1月1日, 标准假彩色(波段543组合)。"

图3

不同时相冬小麦-夏玉米光谱特征的变化 A: 2020年8月26日; B: 2020年9月11日; C: 2020年9月30日; D: 2021年1月1日; E: 2021年3月22日; F: 2021年5月9日。"

图4

不同时相冬小麦-夏玉米NDVI的变化"

图5

决策树方法提取作物种植信息流程图"

表3

冬小麦-夏玉米面积分类结果精度验证"

日期
Date
作物类型
Crop
生产者精度
Producer’s accuracy (%)
用户精度
User accuracy (%)
总体精度
Overall accuracy (%)
Kappa 系数
Kappa coefficient
2020-08-26 夏玉米Summer maize 88.00 76.20 83.60 0.72
非夏玉米Others 77.36 83.65
2020-09-11 夏玉米Summer maize 85.67 73.92 80.42 0.69
非夏玉米Others 89.58 89.23
2020-09-30 夏玉米Summer maize 75.36 73.00 72.60 0.65
非夏玉米Others 86.23 83.51
2021-01-01 冬小麦Winter wheat 89.36 86.39 92.36 0.81
非冬小麦Others 97.32 93.25
2021-03-22 冬小麦Winter wheat 88.92 85.66 90.33 0.80
非冬小麦Others 95.36 92.25
2021-05-09 冬小麦Winter wheat 96.32 93.56 86.54 0.77
非冬小麦Others 78.69 80.35

图6

冬小麦-夏玉米决策树分类结果 A: 2020年8月26日; B: 2020年9月11日; C: 2020年9月30日; D: 2021年1月1日; E: 2021年3月22日; F: 2021年5月9日。"

[1] 赵彦茜, 肖登攀, 柏会子, 唐建昭. 华北平原冬小麦和夏玉米气候适宜性. 生态学杂志, 2020, 39: 2251-2262.
Zhao Y X, Xiao D P, Bai H Z, Tang J Z. Climatic suitability of winter wheat and summer maize in the North China Plain. Chin J Ecol, 2020, 39: 2251-2262 (in Chinese with English abstract).
[2] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2021.
National Bureau of Statistics, P R China. China Statistics Yearbook. Beijing: China Statistics Press, 2021 (in Chinese).
[3] 张有智, 吴黎, 解文欢, 李岩. 农作物遥感监测与评价. 哈尔滨: 哈尔滨工程大学出版社, 2017. p 4.
Zhang Y Z, Wu L, Xie W H, Li Y. Crop Remote Sensing Monitoring and Evaluation. Harbin: Harbin Engineering University Press, 2021. p 4. (in Chinese).
[4] 赵英时. 遥感应用分析原理与方法. 北京: 科学出版社, 2003. pp 3-7.
Zhao Y S. The Principle and Method of Analysis of Remote Sensing Application. Beijing: Science Press, 2003. pp 3-7 (in Chinese).
[5] Fan C, Lu R. UAV image crop classification based on deep learning with spatial and spectral features. IOP Conf Ser: Earth Environ Sci, 2021, 783: 012080.
doi: 10.1088/1755-1315/783/1/012080
[6] Xie Y, Sha Z, Yu M. Remote sensing imagery in vegetation mapping: a review. J Plant Ecol, 2008, 1: 9-23.
doi: 10.1093/jpe/rtm005
[7] Gates D M, Keegan H J, Schleter J C, Weidner V R. Spectral properties of plants. Appl Opt, 1965, 4: 11-20.
doi: 10.1364/AO.4.000011
[8] Swaminathan V, Thomasson J A, Rajan N, Hardin R G, Pokhrel P. Early estimation of nitrogen stress and uptake in cotton based on spectral and morphological features extracted from UAV multispectral images. In: Proceedings of the SPIE, Vol. 12114: Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping VII, Orlando, Florida, United States, 2022. pp 186-194.
[9] 洪志刚, 丛楠, 阎利, 唐新明. 不同时相遥感影像的土地利用分类精度分析. 测绘科学, 2012, 37(1): 112-114.
Hong Z G, Cong N, Yan L, Tang X M. Analysis on classified precision of land use using remote sensing images in different temporal. Sci Surv Map, 2012, 37(1): 112-114 (in Chinese with English abstract).
[10] Wei M, Wang H, Zhang Y, Li Q, Du X, Shi G, Ren Y. Investigating the potential of crop discrimination in early growing stage of change analysis in remote sensing crop profiles. Remot Sens, 2023, 15: 853.
[11] 千怀遂. 农作物遥感估产最佳时相的选择研究-以中国主要粮食作物为例. 生态学报, 1998, 1: 50-57.
Qian H S. Selection of the optimum temporal for crop estimation using remote sensing data-main food crops in China. Acta Ecol Sin, 1998, 1: 50-57 (in Chinese with English abstract).
[12] 邢东兴, 焦俏, 王明军, 封建民, 车自立, 张文帅. 石榴树遥感辨识的最佳时相与方法. 果树学报, 2020, 37: 431-440.
Xing D X, Jiao Q, Wang M J, Feng J M, Che Z L, Zhang W S. The best phase and optimal identification method for identifying pomegranate trees. J Fruit Sci, 2020, 37: 431-440 (in Chinese with English abstract).
[13] 齐腊, 刘良云, 赵春江, 王纪华, 王锦地. 基于遥感影像时间序列的冬小麦种植监测最佳时相选择研究. 遥感技术与应用, 2008, 23: 154-160.
Qi L, Liu L Y, Zhao C J, Wang J H, Wang J D. Selection of optimum periods for extracting winter wheat based on multi-temporal remote sensing images. Remote Sens Technol Appl, 2008, 23: 154-160 (in Chinese with English abstract).
[14] 刘勇洪, 牛铮, 王长耀. 基于MODIS数据的决策树分类方法研究与应用. 遥感学报, 2005, 9: 405-412.
Liu Y H, Niu Z, Wang C Y. Research and application of the decision tree classification using MODIS data. J Remote Sens, 2005, 9: 405-412 (in Chinese with English abstract).
[15] 王凯, 赵军, 朱国锋, 张佩云, 刘江涛, 陈栋栋. 基于GF-1遥感数据决策树与混合像元分解模型的冬小麦种植面积早期估算. 遥感技术与应用, 2018, 33: 158-167.
Wang K, Zhao J, Zhu G F, Zhang P Y, Liu J T, Chen D D. Early estimation of winter wheat planting area in Qingyang City by decision tree and pixel unmixing methods based on GF-1 satellite data. Remote Sens Technol Appl, 2018, 33: 158-167 (in Chinese with English abstract).
[16] 黄健熙, 贾世灵, 武洪峰, 苏伟. 基于GF-1 WFV影像的作物面积提取方法研究. 农业机械学报, 2015, 46(增刊1): 253-259.
Huang X, Jia S L, Wu H F, Su W. Extraction method of crop planted area based on GF-1 WFV image. Trans CSAM, 2015, 46(S1): 253-259 (in Chinese with English abstract).
[17] 马丽, 徐新刚, 刘良云, 黄文江, 贾建华, 程一沛. 基于多时相NDVI及特征波段的作物分类研究. 遥感技术与应用, 2008, 23: 520-524.
Ma L, Xu X G, Liu L Y, Huang W J, Jia J H, Cheng Y P. Study on crops classification based on multi-temporal NDVI and characteristic bands. Remote Sens Technol Appl, 2008, 23: 520-524 (in Chinese with English abstract).
[18] 李亚妮, 曹建君, 杨树文, 李霞, 刘尚钦. 基于决策树的大尺度复杂地区夏收作物遥感提取与分析. 江苏农业学报, 2022, 38: 1257-1264.
Li Y N, Cao J J, Yang S W, Li X, Liu S Q. Extraction and analysis of summer crops in large-scale complex areas based on decision tree. Jiangsu J Agric Sci, 2022, 38: 1257-1264 (in Chinese with English abstract).
[19] Xie Y, Huang J. Integration of a crop growth model and deep learning methods to improve satellite-based yield estimation of winter wheat in Henan province, China. Remote Sens, 2021, 13: 4372.
doi: 10.3390/rs13214372
[20] 叶盛嘉, 郑晨萌, 张影, 刘星. 氮肥减量配施有机肥对豫中地区冬小麦-夏玉米轮作生产力和土壤性质的影响. 中国生态农业学报, 2022, 30: 900-912.
Ye S J, Zheng C M, Zhang Y, Liu X. Effects of reduced chemical nitrogen input combined with organic fertilizer application on the productivity of winter wheat and summer maize rotation and soil properties in central Henan province. Chin J Eco-Agric, 2022, 30: 900-912 (in Chinese with English abstract).
[21] 闫岩, 张钰石, 刘础荣, 任丹阳, 刘洪润. 刘雪睛, 张明才, 李召虎. 冬小麦-夏玉米轮作“双晚”种植模式下的品种匹配与资源效率. 作物学报, 2022, 48: 423-436.
doi: 10.3724/SP.J.1006.2022.11017
Yan Y, Zhang Y S, Liu C R, Ren D Y, Liu H R, Liu X Q, Zhang M C, Li Z H. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system. Acta Agron Sin, 2022, 48: 423-436 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.11017
[22] 王璇. 基于MODIS时间序列的河南主要农作物种植信息提取. 河南大学硕士学位论文, 河南开封, 2019.
Wang X. Information Extraction of Main Crops in Henan Based on MODIS Time Series. MS Thesis of Henan University, Kaifeng, Henan, China, 2019 (in Chinese with English abstract).
[23] 周宝元, 王志敏, 岳阳, 马玮, 赵明. 冬小麦-夏玉米与双季玉米种植模式产量及光温资源利用特征比较. 作物学报, 2015, 41: 1393-1405.
doi: 10.3724/SP.J.1006.2015.01393
Zhou B Y, Wang Z M, Yue Y, Ma W, Zhao M. Comparison of yield and light-temperature resource use efficiency between wheat-maize and maize-maize cropping systems. Acta Agron Sin, 2015, 41: 1393-1405 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.01393
[24] 河南省统计局. 河南统计年鉴. 北京: 中国统计出版社, 2022.
Henan Provincial Bureau of Statistics. Henan Statistical Yearbook. Beijing: China Statistics Press, 2022 (in Chinese).
[25] 温素馨, 韦玉春, 汪美会. TM遥感图像FLAASH大气校正异常值的改正. 测绘科学, 2017, 42(7): 165-171.
Wen S X, Wei Y C, Wang M H. Improvement of outlier in TM image after FLAASH atmospheric correction. Sci Surv Map, 2017, 42(7): 165-171 (in Chinese with English abstract).
[26] She L, Mei L, Xue Y, Che Y, Guang J. SAHARA: A simplified atmospheric correction algorithm for Chinese GaoFen data: 1. Aerosol algorithm. Remote Sens, 2017, 9: 253.
doi: 10.3390/rs9030253
[27] Yang H, Zhang L, Ong C, Rodger A, Liu J, Sun X, Zhang H M, Jian X, Tong Q X. Improved aerosol optical thickness, columnar water vapor, and surface reflectance retrieval from combined CASI and SASI airborne hyperspectral sensors. Remote Sens, 2017, 9: 217.
doi: 10.3390/rs9030217
[28] 曹洪弟, 洪友堂, 张伟, 田渊. 基于ENVI的遥感图像决策树分类. 北京测绘, 2017, 31(2): 67-71.
Cao H D, Hong Y T, Zhang W, Tian Y. Decision tree classification of remote sensing images based on ENVI. Beijing Surv Map, 2017, 31(2): 67-71 (in Chinese with English abstract).
[29] Fei H, Fan Z, Wang C, Zhang N, Wang T, Chen R, Bai T. Cotton classification method at the county scale based on multi-features and random forest feature selection algorithm and classifier. Remote Sens, 2022, 14: 829.
doi: 10.3390/rs14040829
[30] Pettorelli N. The Normalized Difference Vegetation Index. Oxford: Oxford University Press, 2013. pp 18-29.
[31] Petropoulos G P, Kalaitzidisz C. Multispectral vegetation indices in remote sensing: an overview. Ecol Model, 2012, 2: 15-39.
[32] 陈华丽, 陈植华, 丁国平. 用基于知识的决策树方法分层提取矿区土地类型——以湖北大冶为例. 国土资源遥感, 2004, 16(3): 49-53.
Chen H L, Chen Z H, Ding G P. The application of the knowledge-based decision tree classification method to the extraction of land types in mining areas: a case study of date area Hubei province. Remote Sens Land Res, 2004, 16(3): 49-53 (in Chinese with English abstract).
[33] 崔林丽. 遥感影像解译特征的综合分析与评价. 中国科学院遥感应用研究所博士学位论文, 北京, 2005.
Cui L L. Integrative Analysis and Evaluation of the Interpretation Features in Remote Sensing Image. PhD Dissertation of Institute of Remote Sensing Applications Chinese Academy of Sciences, Beijing, China, 2005 (in Chinese with English abstract).
[34] Zhou H, Fu L, Sharma R P, Lei Y, Guo J. A hybrid approach of combining random forest with texture analysis and vdvi for desert vegetation mapping based on UAV RGB data. Remote Sens, 2021, 13: 1891.
doi: 10.3390/rs13101891
[35] Sari I L, Weston C J, Newnham G J, Volkova L. Assessing accuracy of land cover change maps derived from automated digital processing and visual interpretation in tropical forests in Indonesia. Remote Sens, 2021, 13: 1446.
doi: 10.3390/rs13081446
[36] Congalton R G, Green K. Assessing the Accuracy of Remotely Sensed Data:Principles and Practices. New York: CRC Press, 2019. pp 127-130.
[37] Stehman S V, Foody G M. Key issues in rigorous accuracy assessment of land cover products. Remote Sens Environ, 2019, 231: 111199.
doi: 10.1016/j.rse.2019.05.018
[38] 杨可明. 遥感原理与应用. 徐州: 中国矿业大学出版社, 2016. pp 231-234.
Yang K M. Remote Sensing Principle and Applications. Xuzhou: China University of Mining and Technology Press, 2016. pp 231-234 (in Chinese).
[39] 刘良云, 张兵, 张立福. 植被高光谱遥感. 武汉: 湖北科学技术出版社, 2021. pp 31-33.
Liu L Y, Zhang B, Zhang L F. Hyperspectral Remote Sensing of Vegetation. Wuhan: Hubei Science and Technology Press, 2021. pp 31-33 (in Chinese).
[40] 林培. 农业遥感. 北京: 北京农业大学出版社, 1990. pp 18-19.
Lin P. Agricultural Remote Sensing. Beijing: Beijing Agricultural University Press, 1990. pp 18-19 (in Chinese).
[41] Xue J R, Su B F. Significant remote sensing vegetation indices: a review of developments and applications. Sensors, 2017: 1353691.
[42] 张俊华, 张佳宝. 夏玉米光谱特征对其不同色素含量的响应差异. 西北农业学报, 2010, 19(4): 70-76.
Zhang J H, Zhang J B. Response of the spectral reflectance to different pigments of summer maize. Acta Agric Boreali-occident Sin, 2010, 19(4): 70-76 (in Chinese with English abstract).
[43] 张俊华, 张佳宝, 贾科利. 不同品种夏玉米光谱特征差异及其与农学参量相关性研究. 土壤通报, 2010, 41: 287-293.
Zhang J H, Zhang J B, Jia K L. Differences of spectral reflectance, and correlation between reflectance and agronomical parameters in different cultivars of summer maize. Chin J Soil Sci, 2010, 41: 287-293 (in Chinese with English abstract).
[44] Cui B, Zhao Q, Huang W, Song X, Ye H, Zhou X. A new integrated vegetation index for the estimation of winter wheat leaf chlorophyll content. Remote Sens, 2019, 11: 974.
doi: 10.3390/rs11080974
[45] Liu L Y, Huang W J, Pu R L, Wang J H. Detection of internal leaf structure deterioration using a new spectral ratio index in the near-infrared shoulder region. J Integr Agric, 2014, 13: 760-769.
doi: 10.1016/S2095-3119(13)60385-8
[46] 张宏名, 卢志光, 金钟辉, 王家圣, 曹大征. 农田小麦状况的光谱特征分析. 遥感技术与应用, 1991, 6(4): 16-23.
Zhang H M, Lu Z G, Jin Z H, Wang J S, Cao D Z. The Spectral character analyses for state of wheat in field. Remote Sens Technol Appl, 1991, 6(4): 16-23 (in Chinese with English abstract).
[47] Daughtry C S T, Walthall C L, Kim M S, De Colstoun E B, McMurtrey III J E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens, 2000, 74: 229-239.
[48] 李树岩, 彭记永, 刘荣花. 基于气候适宜度的河南夏玉米发育期预报模型. 中国农业气象, 2013, 34: 576-581.
Li S Y, Peng J Y, Liu R H. Prediction model of summer maize developmental stages based on climatic suitability in Henan Province. Chin J Agrometeorol, 2013, 34: 576-581 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-6362.2013.05.012
[49] 河南省人民政府门户网站, https://www.henan.gov.cn/2020/10-28/1872654.html.
The People’s Government of Henan Province, https://www.henan.gov.cn/2020/10-28/1872654.html (in Chinese).
[50] 鄢陵县人民政府. 鄢陵年鉴. 宁夏: 黄河数字出版社, 2022. p 48.
The People’s Government of Yanling County. Yanling Yearbook. Ningxia: Yellow River Digital Press, 2022. p 48 (in Chinese).
[51] 余卫东, 陈怀亮. 河南省夏玉米精细化农业气候区划研究. 气象与环境科学, 2010, 33(2): 14-19.
Yu W D, Chen H L. Study on precise comprehensive agricultural climate regional planning of summer maize in Henan Province. Meteor Environ Sci, 2010, 33(2): 14-19 (in Chinese with English abstract).
[52] 王淑芬, 张喜英, 裴冬. 不同供水条件对冬小麦根系分布、产量及水分利用效率的影响. 农业工程学报, 2006, 22(2): 27-32.
Wang S F, Zhang X Y, Pei D. Impacts of different water supplied conditions on root distribution, yield and water utilization efficiency of winter wheat. Trans CSAE, 2006, 22(2): 27-32 (in Chinese with English abstract).
[53] 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展. 作物学报, 2023, 49: 879-892.
doi: 10.3724/SP.J.1006.2023.21034
Zhang J X, Ge J Z, Ma W, Ding Z S, Wang X B, Li C F, Zhou B H. Research advance on annual water use efficiency of winter wheat-summer maize cropping system in North China Plain. Acta Agron Sin, 2023, 49: 879-892 (in Chinese with English abstract).
[54] 河南省农业厅. 农业生产概论. 郑州: 河南科学技术出版社, 1982. p 95.
Agriculture Department of Henan Province. Introduction to agricultural production. Zhengzhou: Henan Science and Technology Press, 1982. p 95 (in Chinese).
[55] Meng Q, Sun Q, Chen X, Cui Z, Yue S, Zhang F, Römheld V. Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. Agric Ecosyst Environ, 2012, 146: 93-102.
doi: 10.1016/j.agee.2011.10.015
[56] 邓荣鑫, 王文娟, 魏义长, 张富, 李春静, 刘文玉. 河南省冬小麦种植面积遥感监测及其时空特征研究. 灌溉排水学报, 2019, 38(9): 49-54.
Deng R X, Wang W J, Wei Y C, Zhang F, Li C J, Liu W Y. Remote estimation of winter wheat area and its spatio-temporal characteristics in Henan Province. J Irrig Drain, 2019, 38(9): 49-54 (in Chinese with English abstract).
[57] 邵长秀, 徐欣莹, 覃文阮, 龙步菊, 董宛麟, 孙志刚. 华北平原青贮-籽粒玉米双季弹性种植模式的水热资源利用效率分析. 中国农业气象, 2023, 44(3): 206-218.
Shao C X, Xu X Y, Qin W W, Long B J, Dong W L, Sun Z G. Analysis of water and heat resource utilization efficiency in silage-grain maize double season flexible planting pattern in North China Plain. Chin J Agrometeorol, 2023, 44(3): 206-218 (in Chinese with English abstract).
[58] 孙丹峰. 土地利用/覆被遥感分析. 北京: 中国大地出版社, 2006. p 9.
Sun D F. Remote Sensing Analysis of Land Use/Cover. Beijing: China Land Press, 2006. p 9. (in Chinese).
[1] 黄宏胜, 张馨月, 居辉, 韩雪. 大气CO2浓度升高背景下冬小麦冠层光谱特征和地上生物量估算[J]. 作物学报, 2024, 50(4): 991-1003.
[2] 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展[J]. 作物学报, 2023, 49(4): 879-892.
[3] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[4] 周宝元,马玮,孙雪芳,丁在松,李从锋,赵明. 冬小麦-夏玉米高产模式周年气候资源分配与利用特征研究[J]. 作物学报, 2019, 45(4): 589-600.
[5] 周宝元, 王志敏, 岳阳, 马玮, 赵明. 冬小麦-夏玉米与双季玉米种植模式产量及光温资源利用特征比较[J]. 作物学报, 2015, 41(09): 1393-1405.
[6] 吴光磊,曾彦,郭立月,崔正勇,李勇,尹燕枰,王振林,蒋高明. 麦季氮肥运筹对冬小麦–夏玉米种植体系物质生产及氮肥利用的影响[J]. 作物学报, 2012, 38(11): 2100-2107.
[7] 肖春华; 李少昆;卢艳丽;王克如;谢瑞芝;高世菊;李晓君;隋学艳. 基于冠层平行平面光谱特征的冬小麦籽粒蛋白质含量预测[J]. 作物学报, 2007, 33(09): 1468-1473.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .