欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (3): 709-720.doi: 10.3724/SP.J.1006.2024.34088

• 耕作栽培·生理生化 • 上一篇    下一篇

低温胁迫对Bt棉纤维中杀虫蛋白含量及氮代谢的影响

戴雨阳(), 岳野, 刘震宇, 何润, 刘雨婷, 张祥, 陈德华, 陈媛()   

  1. 扬州大学 / 江苏省作物遗传生理国家重点实验室培育点, 江苏扬州 225009
  • 收稿日期:2023-05-22 接受日期:2023-10-23 出版日期:2024-03-12 网络出版日期:2023-11-10
  • 通讯作者: *陈媛, E-mail: cheny@yzu.edu.cn
  • 作者简介:E-mail: 1605339364@qq.com
  • 基金资助:
    国家自然科学基金项目(31906462);江苏省高等学校自然科学研究项目(18KJB210013)

Effects of low temperature on the expression of insecticidal protein in Bt cotton fibers and its physiological mechanism

DAI Yu-Yang(), YUE Ye, LIU Zhen-Yu, HE Run, LIU Yu-Ting, ZHANG Xiang, CHEN De-Hua, CHEN Yuan()   

  1. Yangzhou University / Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou 225009, Jiangsu, China
  • Received:2023-05-22 Accepted:2023-10-23 Published:2024-03-12 Published online:2023-11-10
  • Contact: *E-mail: cheny@yzu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31906462);Natural Science Research Project of Jiangsu Higher Education Institutions(18KJB210013)

摘要:

本研究以常规种泗抗1号(Sikang 1, SK1)和杂交种泗抗3号(Sikang 3, SK3)为材料进行盆栽试验, 研究了不同低温水平及其处理持续时间对Bt棉盛铃期纤维中杀虫蛋白含量变化及氮代谢生理特征。结果表明, 纤维中的杀虫蛋白含量随着温度的降低总体呈下降趋势, 同时低温处理持续期显著影响杀虫蛋白含量。与对照相比, 纤维中杀虫蛋白含量的降低幅度随低温胁迫时间的延长而增大。此外, 随着处理温度的降低, 可溶性蛋白含量、谷丙转氨酶活性、谷草转氨酶活性呈下降趋势, 游离氨基酸含量、肽酶活性、蛋白酶活性呈上升趋势, 且在低温处理48 h后, 均与杀虫蛋白含量呈极显著相关。因此, 低温胁迫促使了蛋白质的合成功能下降, 分解能力增强, 导致可溶性蛋白含量下降, 游离氨基酸含量升高, 最终导致杀虫蛋白含量下降, 且其受低温胁迫持续期显著影响。

关键词: Bt棉, 低温, 杀虫蛋白, 氮代谢

Abstract:

The study in pot experiments using conventional cultivar Sikang 1 (SK1) and hybrid cultivar Sikang 3 (SK3) as the experimental materials conducted the changes of Bt insecticidal protein content and nitrogen metabolism related physiological characteristics in Bt cotton fibers at peak boll stage under different low temperature and processing duration. The content of insecticidal protein in fibers decreased with the decrease of temperature, and the duration of low temperature treatment significantly affects the content of insecticidal protein compared with the control, the greater decrease of insecticidal protein content was observed with the extension of low temperature stress time. The soluble protein content, GOT activity, and GPT activity had a downward trend, while the free amino acid content, peptidase activity, and protease activity had an upward trend. After low temperature treatment for 48 hours, there was a significant correlation between those nitrogen metabolism related parameters with insecticidal protein content. Therefore, low temperature stress also decreased protein synthesis, enhanced protein decomposition, resulting in a decrease in soluble protein content, an increase in free amino acid content, and thus a reduced Bt insecticidal protein content, which significantly affected by the duration of low temperature stress.

Key words: Bt cotton, low temperature, insecticidal protein, nitrogen metabolism

表1

人工气候室48 h内各处理最低温度和最高温度"

处理
Treatment
2020 2021
最低温度
Minimum temperature
最高温度
Maximum temperature
最低温度
Minimum temperature
最高温度
Maximum temperature
27℃ 26.8 27.3 26.8 27.2
20℃ 19.7 20.2
19℃ 18.9 19.2 18.8 19.3
18℃ 17.8 18.2 17.7 18.1
17℃ 16.8 17.2 16.8 17.3
16℃ 15.8 16.2 15.8 16.3

图1

低温对Bt棉纤维中杀虫蛋白含量的影响 SK1: 泗抗1号; SK3: 泗抗3号。图中不同小写字母代表相同品种不同温度在0.05概率水平差异显著。"

图2

低温对Bt棉纤维中可溶性蛋白含量的影响 SK1: 泗抗1号; SK3: 泗抗3号。图中不同小写字母代表相同品种不同温度在0.05概率水平差异显著。"

图3

低温对Bt棉纤维游离氨基酸含量的影响 SK1: 泗抗1号; SK3: 泗抗3号。图中不同小写字母代表相同品种不同温度在0.05概率水平差异显著。"

图4

低温对Bt棉纤维谷草转氨酶活性的影响 SK1: 泗抗1号; SK3: 泗抗3号。图中不同小写字母代表相同品种不同温度在0.05概率水平差异显著。"

图5

低温对Bt棉纤维谷丙转氨酶活性的影响 SK1: 泗抗1号; SK3: 泗抗3号。图中不同小写字母代表相同品种不同温度在0.05概率水平差异显著。"

图6

低温对Bt棉纤维蛋白酶活性的影响 SK1: 泗抗1号; SK3: 泗抗3号。图中不同小写字母代表相同品种不同温度在0.05概率水平差异显著。"

图7

低温对Bt棉纤维肽酶活性的影响 SK1: 泗抗1号; SK3: 泗抗3号。图中不同小写字母代表相同品种不同温度在0.05概率水平差异显著。"

表2

杀虫蛋白含量与氮代谢关键物质含量和关键酶活性相关分析"

年份
Year
品种
Cultivar
处理
Treatment
可溶性蛋白
Soluble protein
游离氨基酸
Free amino acid
谷草转氨酶
GOT
谷丙转氨酶
GPT
蛋白酶
Protease
肽酶
Peptidase
2020 SK1 12 h 0.7773 -0.7284 0.8497* 0.9266** -0.9293** -0.9238**
24 h 0.9740** -0.9858** 0.9853** 0.9959** -0.9516** -0.9961**
48 h 0.9787** -0.9946** 0.9935** 0.9832** -0.9922** -0.9887**
SK3 12 h 0.9197** -0.9704** 0.8672* 0.9717** -0.8935* -0.9409**
24 h 0.8816* -0.9841** 0.9961** 0.9926** -0.9747** -0.9796**
48 h 0.9268** -0.9657** 0.9727** 0.9738** -0.9610** -0.9459**
2021 SK1 12 h 0.9098* -0.8287 0.8903* 0.7419 -0.8823* -0.7512
24 h 0.9414* -0.9820** 0.9849** 0.9952** -0.9957** -0.9665**
48 h 0.9798** -0.9579* 0.9899** 0.9464* -0.9907** -0.9175*
SK3 12 h 0.6864 -0.9926** 0.9451* 0.9509* -0.9403* -0.9724**
24 h 0.9664** -0.9573* 0.9791** 0.9661** -0.9824** -0.9990**
48 h 0.9867** -0.9941** 0.9626** 0.9865** -0.9542* -0.9937**

表3

逐步回归分析结果"

因变量
Dependent variable
显著水平
Significant level
自变量进入方程顺序
The order of stepwise
回归方程
Regression equation
杀虫蛋白含量
Bt insecticidal protein content
0.05 X3, X6 Y = 3.865-0.175X3-0.232X6
[1] Qiao F, Huang J, Wang X. Fifteen years of Bt cotton in China: results from household surveys. World Dev, 2017, 98: 351-359.
doi: 10.1016/j.worlddev.2017.05.006
[2] Deguine J P, Ferron P, Russell D. Sustainable pest management for cotton production: a review. Agron Sustain Dev, 2008, 28: 113-137.
doi: 10.1051/agro:2007042
[3] Huang J, Rozelle S, Pray C, Wang Q. Plant biotechnology in China. Science, 2002, 295: 674-676.
pmid: 11809972
[4] Xia J, Hao X Z, Wang T A, Li H Q, Shi X J, Liu Y C, Luo H H. Seed priming with gibberellin regulates the germination of cotton seeds under low temperature conditions. J Plant Growth Regul, 2023, 42: 319-334.
doi: 10.1007/s00344-021-10549-2
[5] 李一腾. 新疆棉花花铃期障碍型低温冷害空间变化特征及危险性评价. 现代农业科技, 2022, (9): 17-19.
Li Y T. Spatial variation characteristics and risk assessment of barrier type cold damage at cotton boll stage in Xinjiang. Modern Agric Technol, 2022, (9): 17-19 (in Chinese with English abstract).
[6] 李红英, 朱蓉慧, 田苗, 马建军, 季芬, 严彩虹. 北疆棉花出苗的低温胁迫影响及适宜播种期研究. 中国农学通报, 2019, 35(25): 27-31.
doi: 10.11924/j.issn.1000-6850.casb18090126
Li H Y, Zhu R H, Tian M, Ma J J, Ji F, Yan C H. Study on the effect of low temperature stress on cotton emergence and suitable sowing time in northern Xinjiang. Chin Agric Sci Bull, 2019, 35(25): 27-31 (in Chinese with English abstract).
[7] 马启峰. 棉花纤维发育起始期蛋白质组和转录组学分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2016.
Ma Q F. Proteomic and Transcriptomic Analysis of Cotton Fiber Development Initiation. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2016 (in Chinese with English abstract).
[8] 陈松, 周冬生, 吴振廷, 王学林, 周宝良. 转Bt基因棉32B不同生育期抗虫性的变化及其机理. 江苏农业学报, 2002, 18(2): 80-84.
Chen S, Zhou D S, Wu Z T, Wang X L, Zhou B L. Changes of insect resistance of Bt transgenic cotton 32B at different growth stages and its physiological mechanisms. Jiangsu J Agric Sci, 2002, 18(2): 80-84 (in Chinese with English abstract).
[9] 李汝忠, 沈法富, 王宗文, 王景会, 刘承运, 申贵芳. 转Bt基因抗虫棉Bt基因表达的时空动态. 山东农业科学, 2002, (2): 7-9.
Li R Z, Shen F F, Wang Z W, Wang J H, Liu C Y, Shen G F. Temporal and spatial dynamics of Bt gene expression in transgenic Bt cotton. Shandong Agric Sci, 2002, (2): 7-9 (in Chinese with English abstract).
[10] 刘耀武, 刘洪春, 付桂月, 李宏华, 孙福燕. 近年抗虫棉抗虫性下降原因分析及对策. 中国植保导刊, 2008, 28(1): 30-31.
Liu Y W, Liu H C, Fu G Y, Li H H, Sun F Y. Analysis and countermeasures of the decline of insect-resistant cotton in recent years. Chin Plant Prot, 2008, 28(1): 30-31 (in Chinese with English abstract).
[11] Zhang X, Wang J, Peng S, Li Y, Tian X F, Wang G C, Zhang Z N, Dong Z D, Chen Y, Chen D H. Effects of soil water deficit on insecticidal protein expression in boll shells of transgenic Bt cotton and the mechanism. Front Plant Sci, 2017, 8: 2107.
doi: 10.3389/fpls.2017.02107 pmid: 29321788
[12] 夏兰芹, 郭三堆. 高温对转基因抗虫棉中Bt杀虫基因表达的影响. 中国农业科学, 2004, 37: 1733-1737.
Xia L Q, Guo S D. The expression of Bt toxin gene under different thermal treatments. Sci Agric Sin, 2004, 37: 1733-1737 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.041127
[13] 周冬生, 吴振廷, 王学林, 郑厚今, 夏静. 土壤胁迫与温度对转Bt基因棉抗虫性的影响. 棉花学报, 2001, 13(5): 290-292.
Zhou D S, Wu Z T, Wang X L, Zheng H J, Xia J. Effects of soil stress and temperature on insect resistance of transgenic BT cotton. Cotton Sci, 2001, 13(5): 290-292 (in Chinese with English abstract).
[14] 钟信念, 梁其干, 徐建伟, 徐蒙可, 唐铠秀, 李志博. 蕾期低温胁迫对棉花生长发育的影响. 新疆农业科学, 2022, 59: 551-557.
doi: 10.6048/j.issn.1001-4330.2022.03.004
Zhong X N, Liang Q G, Xu J W, Xu M K, Tang K X, Li Z B. Effect of low temperature stress at Bud Stage on growth and development of cotton. Xinjiang Agric Sci, 2022, 59: 551-557 (in Chinese with English abstract).
[15] 周青. 铃期温度影响棉花纤维发育的生理机制研究. 南京农业大学博士学位论文, 江苏南京, 2013.
Zhou Q. Physiological Mechanism of Cotton Fiber Development Affected by Boll Stage Temperature. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2013 (in Chinese with English abstract).
[16] Fitt G P, Mares C L. Field evaluation and protectional ecological impact of transgenic cotton (Gosspium hirstum) in Australian. Biocontrol Sci Technol, 1997, 4: 535-548.
doi: 10.1080/09583159409355367
[17] Chen Y, Wen Y J, Chen Y, Cothren J T, Zhang X, Wang Y H, Payne W A, Chen D H. Effects of extreme air temperature and humidity on the insecticidal expression level of Bt cotton. J Integr Agric, 2012, 11: 1836-1844.
[18] 陈松, 吴敬音, 何小兰, 黄骏麒, 周宝良, 张荣铣. 转基因抗虫棉组织中Bt毒蛋白表达量的ELISA测定. 江苏农业学报, 1997, 13(3): 27-29.
Chen S, Wu J Y, He X L, Huang J Q, Zhou B L, Zhang R X. ELISA determination of BT toxin protein expression in transgenic cotton tissues. Jiangsu J Agric Sci, 1997, 13(3): 27-29 (in Chinese with English abstract).
[19] 扬州大学农学院. 作物栽培生理研究法实验讲义. 扬州: 扬州大学出版社, 2007. pp 3-6.
Agriculture College, Yangzhou University. Experimental Handout on Research Methods of Crop Cultivation Physiology. Yangzhou: Yangzhou University Press, 2007. pp 3-6 (in Chinese).
[20] 邵金良, 黎其万, 董宝生, 刘宏程, 束继红. 茚三酮比色法测定茶叶中游离氨基酸总量. 中国食品添加剂, 2008, (2): 162-165.
Shao J L, Li Q W, Dong B S, Liu H C, Shu J H. Determination of total free amino acids in tea by ninhydrin colorimetry. China Food Add, 2008, (2): 162-165 (in Chinese with English abstract).
[21] 吴良欢, 蒋式洪, 陶勤南. 植物转氨酶(GOT和GPT)活度比色测定方法及其应用. 土壤通报, 1998, 29(3): 41-43.
Wu L H, Jiang S H, Tao Q N. Colorimetric determination of plant transaminases (GOT and GPT) activity and its application. Chin J Soil Sci, 1998, 29(3): 41-43 (in Chinese with English abstract).
[22] 董志强, 何钟佩, 翟学军. 转Bt基因棉新棉33-B叶片氮素代谢特征及其化学调控潜力. 棉花学报, 2000, 12(3): 113-117.
Dong Z Q, He Z P, Zhai X J. Characteristics of nitrogen metabolism and its potential of chemical regulation in 33-B leaves of transgenic Bt cotton. Cotton Sci, 2000, 12(3): 113-117 (in Chinese with English abstract).
[23] Kargiotidou A, Deli D, Galanopoulou D, Tsaftaris A, Farmaki T. Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). J Exp Bot, 2008, 59: 2043-2056.
doi: 10.1093/jxb/ern065 pmid: 18453533
[24] Mahon R, Finnegan J, Olsen K, Entomology C. Environmental stress and the efficacy of Bt cotton. Aust Cotton Grower, 2002, 2: 18.
[25] 周冬生, 吴振廷, 王学林, 倪春耕, 郑厚今, 夏静. 施肥量和环境温度对转Bt基因棉抗虫性的影响. 安徽农业大学学报, 2000, 27: 352-357.
Zhou D S, Wu Z T, Wang X L, Ni C G, Zheng H J, Xia J. Effects of fertilization and environmental temperature on insect resistance of transgenic Bt cotton. J Anhui Agric Univ, 2000, 27: 352-357 (in Chinese with English abstract).
[26] 张明伟, 缪军, 顾超, 吕春花, 陈德华, 张祥. 低温高湿对转Bt基因抗虫棉杀虫蛋白表达及其氮代谢的影响. 中国农学通报, 2012, 28(9): 218-221.
Zhang M W, Miao J, Gu C, Lyu C H, Chen D H, Zhang X. Effects of low temperature and high humidity on expression of insecticidal protein and nitrogen metabolism in transgenic BT cotton. Chin Agric Sci Bull, 2012, 28(9): 218-221 (in Chinese with English abstract).
[27] Chen Y, Liu Z Y, Dai Y Y, Yue Y, Liu Y T, Li H J, He R, Zhang X, Chem D H. Low temperature decreased insecticidal protein contents of cotton and its physiological mechanism. Front Plant Sci, 2022, 13: 1082926.
doi: 10.3389/fpls.2022.1082926
[28] 董志强. Bt棉抗虫性表达的化学调控. 中国农业科学院博士学位论文, 北京, 2002.
Dong Z Q. Chemical Regulation of Insect Resistance Expression in Bt Cotton. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2002 (in Chinese with English abstract).
[29] 刘志, 郭旺珍, 朱协飞, 朱桢, 张天真. 转Bt + GNA双价基因抗虫棉花中抗虫基因及其抗虫性的遗传稳定性. 作物学报, 2004, 30: 6-10.
Liu Z, Guo W Z, Zhu X F, Zhu Z, Zhang T Z. Insect-resistant genes in transgenic BT + GNA transgenic cotton and their genetic stability. Acta Agron Sin, 2004, 30: 6-10 (in Chinese with English abstract).
[30] 董双林, 文绍贵, 王月恒. 转Bt基因棉对棉铃虫存活、生长及为害的影响. 棉花学报, 1997, (4): 9-15.
Dong S L, Wen S G, Wang Y H. Effects of transgenic Bt cotton on survival, growth and damage of Helicoverpa armigera. Cotton Sci, 1997, (4): 9-15 (in Chinese with English abstract).
[31] Chen D H, Ye G Y, Yang C Q, Chen Y. The effect of high temperature on the insecticidal properties of Bt cotton. Environ Exp Bot, 2005, 53: 333-342.
doi: 10.1016/j.envexpbot.2004.04.004
[32] 王桂霞. 高温胁迫与终止后Bt棉生殖器官杀虫蛋白表达量变化及相关生理机制研究. 扬州大学硕士学位论文, 江苏扬州, 2014.
Wang G X. Studies on the Expression of Insecticidal Proteins in Reproductive Organs of Bt Cotton under High Temperature Stress and Termination and the Related Physiological Mechanism. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2014 (in Chinese with English abstract).
[1] 孙尚文, 束红梅, 杨长琴, 张国伟, 王晓婧, 孟亚利, 王友华, 刘瑞显. 低温下环丙酸酰胺调控棉花内源激素促进噻苯隆脱叶的机制[J]. 作物学报, 2024, 50(1): 187-198.
[2] 刘凯, 陈积金, 刘帅, 陈旭, 赵新茹, 孙尚, 薛超, 龚志云. 低温胁迫下组蛋白H3K18cr在水稻全基因组上的动态变化特征解析[J]. 作物学报, 2023, 49(9): 2398-2411.
[3] 李亦扬, 李远, 赵子胥, 张鼎顺, 杜嘉宁, 吴淑娟, 孙思琦, 陈媛, 张祥, 陈德华, 刘震宇. 土壤增氮对棉铃对位叶Bt杀虫蛋白含量影响及氮代谢机制[J]. 作物学报, 2023, 49(9): 2505-2516.
[4] 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817.
[5] 王瑞, 李向岭, 郭栋, 王新兵, 马玮, 李从锋, 赵明, 周宝元. 增施氮肥对夏玉米花后高温胁迫下籽粒碳氮代谢的影响[J]. 作物学报, 2023, 49(12): 3342-3351.
[6] 陈心怡, 朱盈, 马中涛, 张明月, 魏海燕, 张洪程, 刘国栋, 胡群, 李光彦, 许方甫. 光强和氮肥互作对南方软米粳稻灌浆结实期碳氮代谢影响及其与产量品质间关系[J]. 作物学报, 2023, 49(11): 3042-3062.
[7] 杜鹃, 彭晓君, 侯娟, 刘腾飞, 刘增, 宋波涛. 马铃薯淀粉酶StBAM9互作蛋白的鉴定及其互作机制分析[J]. 作物学报, 2023, 49(10): 2643-2653.
[8] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[9] 白冬梅, 薛云云, 黄莉, 淮东欣, 田跃霞, 王鹏冬, 张鑫, 张蕙琪, 李娜, 姜慧芳, 廖伯寿. 不同花生品种芽期耐寒性鉴定及评价指标筛选[J]. 作物学报, 2022, 48(8): 2066-2079.
[10] 裴丽珍, 陈远学, 张雯雯, 肖华, 张森, 周元, 徐开未. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响[J]. 作物学报, 2022, 48(8): 2115-2124.
[11] 王娟, 刘翼, 姚丹妤, 邹景伟, 肖世和, 孙果忠. 小麦生殖发育阶段对低温的敏感性鉴定[J]. 作物学报, 2022, 48(7): 1721-1729.
[12] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[13] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[14] 李涵佳, 李远, 刘震宇, 张晨霞, 徐泽, 吴天凡, 陈媛, 张祥, 陈源, 陈德华. 土壤增施氮肥对棉蕾Bt杀虫蛋白表达量影响及氮代谢机制[J]. 作物学报, 2022, 48(10): 2567-2574.
[15] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .