欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (10): 2567-2574.doi: 10.3724/SP.J.1006.2022.14205

• 耕作栽培·生理生化 • 上一篇    下一篇

土壤增施氮肥对棉蕾Bt杀虫蛋白表达量影响及氮代谢机制

李涵佳(), 李远, 刘震宇, 张晨霞, 徐泽, 吴天凡, 陈媛, 张祥, 陈源, 陈德华()   

  1. 扬州大学 / 江苏省作物遗传生理国家重点实验室培育点 / 粮食作物现代产业技术协同创新中心, 江苏扬州 225009
  • 收稿日期:2021-10-30 接受日期:2022-02-25 出版日期:2022-10-12 网络出版日期:2022-03-22
  • 通讯作者: 陈德华
  • 作者简介:第一作者联系方式: E-mail: 1311190875@qq.com
  • 基金资助:
    国家自然科学基金项目(31471435);国家自然科学基金项目(31671613);江苏省自然科学基金项目(BK20191439);江苏省高等教育优势学科发展计划项目(PAPD)

Effects of increased nitrogen fertilizer on square Bt protein expression and nitrogen metabolism in cotton

LI Han-Jia(), LI Yuan, LIU Zhen-Yu, ZHANG Chen-Xia, XU Ze, WU Tian-Fan, CHEN Yuan, ZHANG Xiang, CHEN Yuan, CHEN De-Hua()   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-10-30 Accepted:2022-02-25 Published:2022-10-12 Published online:2022-03-22
  • Contact: CHEN De-Hua
  • Supported by:
    National Natural Science Foundation of China(31471435);National Natural Science Foundation of China(31671613);Natural Science Foundation of Jiangsu Province(BK20191439);Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)

摘要:

为明确土壤增施氮肥对Bt棉生殖器官棉蕾杀虫蛋白表达量影响, 2017—2018年于扬州大学遗传生理重点实验室以Bt棉常规品种泗抗1号(SK-1)、杂交品种泗抗3号(SK-3)为材料, 在常规施氮量300 kg hm-2基础上, 设计施氮量分别增加25%、50%、75%、100%的处理, 探讨土壤增施氮肥对Bt棉棉蕾中杀虫蛋白表达量的影响及其氮代谢生理机制。结果表明, 2个类型品种棉蕾中Bt杀虫蛋白含量均随增施氮量提高呈先增加后降低的趋势, 与对照相比, 施氮量增加25%~100%, 棉蕾Bt蛋白增加4.5%~132.7%, Bt蛋白的最大含量基本出现在常规施氮1.50~1.75倍(450~525 kg hm-2)。氮代谢生理机制则表明, 棉蕾中可溶性蛋白(soluble protein, SP)含量、游离氨基酸(free amino acid, AA)含量、谷氨酸草酰乙酸转氨酶(glutamic oxalacetic transaminase, GOT)活性和谷氨酰胺合成酶(glutamine synthetase, GS)活性的变化趋势与Bt蛋白含量表现一致, 而蛋白质分解关键酶(蛋白酶、肽酶)活性则随施氮量的增加呈下降趋势。因此, 在常规施氮基础上适量增施氮肥有利于棉蕾Bt蛋白的合成, 进而提高抗虫性。

关键词: Bt棉, 增施氮肥, 杀虫蛋白, 氮代谢

Abstract:

To investigate the effects of increased nitrogen application on square Bt protein concentration in cotton, the experiments were conducted at Key Laboratory of Genetics and Physiology of Yangzhou University in 2017 and 2018. The conventional cultivar Sikang 1 and hybrid cultivar Sikang 3 were used as the experimental materials. Enhanced nitrogen fertilizer rates of increased 25% to 100% nitrogen (300 (CK), 375, 450, 525, and 600 kg hm-2 as pure nitrogen) were designed to study the effect on square Bt protein content and nitrogen metabolic physiological in cotton. Compared with the control (300 kg hm-2), the squares Bt protein content increased first, but bolstered extent was reduced when increased nitrogen was at 1.50-1.75 times of conventional nitrogen rates (450-525 kg hm-2). Bt protein content in square increased by 4.5%-132.7% with the increase of 25%-100% nitrogen application. The maximum value of square Bt protein content was observed at nitrogen rate of 450-525 kg hm-2. The physiological mechanism of nitrogen metabolism showed that the trend of soluble protein (SP), free amino acid (AA), and key enzymes of protein synthesis (glutamic oxalacetic Transaminase, GOT and glutamine synthetase, GS) in squares were consistent with those of Bt protein. The activities of key enzymes of protein decomposition (protease and peptidase) decreased with the increase of nitrogen application. In conclusion, the increasing nitrogen application at optimum level in soil would promote Bt protein synthesis and benefit the insect resistance.

Key words: Bt cotton, enhanced nitrogen fertilizer application, insecticidal protein, nitrogen metabolism

表1

增施氮肥对棉蕾Bt杀虫蛋白含量的影响"

品种
Variety
处理
Treatment
2017 2018
18 d 21 d 24 d 18 d 21 d 24 d
SK-1 CK 103.36 d 153.64 b 195.74 g 133.65 fg 141.38 e 149.29 e
N1 163.00 d 195.61 b 249.73 f 147.53 de 159.51 d 162.81 d
N2 209.64 b 338.91 a 309.45 de 165.83 c 177.05 c 182.88 c
N3 240.48 a 323.90 a 387.85 ab 196.02 a 204.43 a 209.05 a
N4 198.60 bc 160.58 b 279.40 ef 153.26 d 170.06 c 176.32 c
SK-3 CK 94.20 d 175.06 b 318.58 cd 126.76 g 130.16 f 136.54 f
N1 144.72 c 193.67 b 332.95 cd 138.21 ef 142.21 e 149.32 e
N2 179.94 bc 354.54 a 354.32 bc 152.40 d 156.78 d 160.85 d
N3 176.10 bc 374.84 a 410.19 a 183.14 b 187.89 b 192.27 b
N4 164.28 bc 318.11 a 339.67 cd 144.98 de 149.95 de 156.77 d

表2

增施氮肥对棉蕾可溶性蛋白含量的影响"

品种
Variety
处理
Treatment
2017 2018
18 d 21 d 24 d 18 d 21 d 24 d
SK-1 CK 0.45 e 0.57 cd 0.73 bc 0.25 de 0.22 e 0.43 c
N1 0.98 bc 0.83 bcd 0.81 ab 0.57 bc 0.34 de 0.78 bc
N2 1.18 ab 0.87 bc 0.90 ab 0.82 a 0.54 bcd 0.79 bc
N3 1.44 a 1.36 a 1.02 a 0.69 ab 0.70 bc 1.29 ab
N4 0.60 de 0.77 bcd 0.76 ab 0.63 abc 0.47 cde 0.75 bc
SK-3 CK 0.67 de 0.56 d 0.41 c 0.16 e 0.37 de 0.58 c
N1 0.84 cd 0.74 bcd 0.65 bc 0.32 de 0.53 bcd 0.86 bc
N2 1.26 a 0.87 b 0.97 ab 0.39 cde 1.24 a 1.54 a
N3 1.36 a 1.16 a 1.06 a 0.42 cd 0.80 b 1.87 a
N4 0.79 cd 0.68 bcd 0.63 bc 0.31 de 0.59 bcd 1.27 ab

表3

增施氮肥对棉蕾游离氨基酸含量的影响"

品种
Variety
处理
Treatment
2017 2018
18 d 21 d 24 d 18 d 21 d 24 d
SK-1 CK 6.83 e 6.72 g 6.23 d 3.86 b 3.51 f 5.37 e
N1 8.66 d 8.35 f 8.47 c 4.01 b 4.64 ef 6.54 d
N2 10.31 bc 11.37 cd 12.19 ab 6.35 a 6.35 cd 8.00 abc
N3 10.79 b 12.11 bc 12.81 a 6.52 a 6.86 bc 7.22 bcd
N4 9.34 cd 10.24 de 8.94 c 4.59 b 5.77 cde 6.94 cd
SK-3 CK 6.80 e 9.24 ef 5.73 d 2.60 c 5.29 de 6.79 cd
N1 8.72 d 9.78 e 6.69 d 3.54 bc 5.40 de 6.89 cd
N2 10.98 b 13.28 ab 11.01 b 3.81 b 7.72 ab 9.14 a
N3 12.53 a 14.33 a 12.32 ab 6.57 a 8.24 a 8.29 ab
N4 8.72 d 11.36 cd 8.57 c 3.65 bc 5.90 cde 7.74 bcd

表4

增施氮肥对棉蕾GOT活性的影响"

品种
Variety
处理
Treatment
2017 2018
18 d 21 d 24 d 18 d 21 d 24 d
SK-1 CK 4.18 c 6.50 e 11.70 bc 3.79 d 4.13 c 2.69 c
N1 4.26 c 7.18 de 11.97 b 3.94 cd 4.47 c 3.65 abc
N2 4.84 bc 8.63 c 11.96 b 4.07 bcd 4.88 b 4.17 ab
N3 5.36 bc 13.97 a 10.76 cd 4.19 bcd 5.25 a 4.62 a
N4 4.84 bc 10.07 b 9.28 ef 3.97 cd 4.47 c 3.66 abc
SK-3 CK 4.49 bc 5.76 e 8.39 f 4.30 bcd 3.34 d 3.52 bc
N1 7.13 abc 6.98 e 9.82 de 4.57 abc 3.53 d 3.79 ab
N2 10.15 a 8.50 cd 10.81 cd 5.03 a 3.70 d 4.29 ab
N3 9.83 a 9.18 bc 13.67 a 4.78 ab 4.26 c 4.39 ab
N4 7.63 ab 6.62 e 11.95 b 4.72 ab 3.54 d 3.94 ab

表5

增施氮肥对棉蕾GS活性的影响"

品种
Variety
处理
Treatment
2017 2018
18 d 21 d 24 d 18 d 21 d 24 d
SK-1 CK 3.92 f 6.46 h 7.00 f 3.47 f 5.78 f 6.94 cd
N1 6.20 e 9.32 f 9.10 d 5.35 d 7.10 d 7.51 cd
N2 8.37 c 11.25 d 11.42 b 6.30 b 8.07 bc 10.27 a
N3 9.22 ab 12.72 b 12.36 a 6.82 a 8.31 ab 10.35 a
N4 6.53 de 9.51 ef 9.61 c 5.98 c 8.05 bc 8.13 bc
SK-3 CK 3.70 f 7.52 g 7.33 e 4.92 e 5.85 f 6.77 d
N1 6.82 d 9.52 ef 9.30 d 5.45 d 6.46 e 7.35 cd
N2 9.10 b 11.68 c 11.61 b 6.84 a 7.82 c 9.13 ab
N3 9.51 a 13.57 a 12.22 a 6.85 a 8.61 a 9.51 a
N4 6.36 e 9.78 e 9.11 d 5.90 c 6.71 e 7.82 cd

表6

增施氮肥对棉蕾蛋白酶活性的影响"

品种
Variety
处理
Treatment
2017 2018
18 d 21 d 24 d 18 d 21 d 24 d
SK-1 CK 14.47 a 14.49 a 12.52 a 15.22 bc 16.67 ab 33.96 ab
N1 13.21 bc 14.28 a 11.97 a 14.61 bcd 15.76 abc 28.20 bcd
N2 12.34 de 12.16 cd 9.84 abc 13.88 cd 12.83 abcd 26.81 cde
N3 11.24 f 11.60 de 9.22 bc 10.59 e 11.67 bcd 17.97 fg
N4 11.65 ef 10.13 f 8.81 c 10.00 e 8.40 d 10.55 h
SK-3 CK 14.15 a 13.74 ab 12.40 a 17.81 a 18.35 a 34.48 a
N1 14.14 a 12.80 bc 11.72 ab 16.64 ab 16.21 ab 29.87 abc
N2 13.88 ab 12.93 bc 11.13 abc 12.38 de 14.23 abc 22.32 def
N3 12.72 cd 12.59 bcd 11.00 abc 9.93 e 11.36 bcd 20.66 ef
N4 12.30 de 10.98 ef 10.70 abc 9.92 e 10.21 cd 14.19 gh

表7

增施氮肥对棉蕾肽酶活性的影响"

品种
Variety
处理Treatment 2017 2018
18 d 21 d 24 d 18 d 21 d 24 d
SK-1 CK 13.11 a 13.83 a 19.78 ab 16.45 a 16.04 ab 19.51 a
N1 10.91 b 11.25 bc 16.10 c 14.63 ab 14.45 abc 14.99 bc
N2 8.71 c 9.93 cd 15.62 c 10.11 cd 12.97 bcd 13.73 cd
N3 7.05 d 8.81 de 13.11 d 10.04 cd 10.98 d 13.02 cde
N4 5.52 e 6.09 f 11.06 e 8.60 d 10.79 d 10.49 e
SK-3 CK 13.82 a 14.39 a 20.65 a 15.08 ab 17.03 a 18.22 a
N1 12.52 a 12.06 b 18.65 b 14.66 ab 15.98 ab 16.89 ab
N2 10.26 b 11.05 bc 16.51 c 13.10 abc 12.46 cd 13.76 cd
N3 7.79 cd 9.04 de 13.83 d 12.42 abcd 10.34 d 12.54 cde
N4 5.35 e 8.03 e 11.88 e 12.18 bcd 10.29 d 11.39 de

图1

棉蕾氮代谢主要化合物及关键酶活性与Bt杀虫蛋白含量的关系 SP: 可溶性蛋白; AA: 游离氨基酸; GOT: 谷氨酸草酰乙酸转氨酶; GS: 谷氨酰胺合成酶。相关系数的正负及大小表示对Bt蛋白含量贡献的正负效应和大小。**表示极显著相关(P < 0.01)。"

[1] James C. Preview: global status of commercialized biotech/GM crops. ISAAA Briefs, 2004, 32: 1-12.
[2] 郭香墨, 范术丽, 王红梅, 严根土. 我国棉花育种技术的创新与成就. 棉花学报, 2007, 19: 323-330.
Guo X M, Fan S L, Wang H M, Yan G T. Achievements of technical innovation about cotton genetics and breeding in China. Cotton Sci, 2007, 19: 323-330. (in Chinese with English abstract)
[3] 夏敬源, 邹奎, 马志强, 夏文省, 柏长青. 国产转基因抗虫棉技术集成创新与推广应用. 中国棉花, 2006, 33(10): 2-5.
Xia J Y, Zou K, Ma Z Q, Xia W S, Bai C Q. Domestic transgenic cotton technology integration innovation and application. China Cotton, 2006, 33(10): 2-5. (in Chinese)
[4] 魏艳丽, 黄玉杰, 李红梅, 孙红星, 杨合同. 棉花转基因技术研究. 山东科学, 2008, 21(3): 38-41.
Wei Y L, Huang Y J, Li H M, Sun H X, Yang H T. A survey of cotton transgene technology. Shandong Sci, 2008, 21(3): 38-41. (in Chinese with English abstract)
[5] 李悦有, 翟黎芳, 卢川. 河北棉区的棉花生产现状及发展策略分析. 棉花科学, 2016, 38(3): 8-13.
Li Y Y, Zhai L F, Lu C. Analysis of cotton production situation and development strategy in Hebei cotton area. Cotton Sci, 2016, 38(3): 8-13. (in Chinese with English abstract)
[6] James C. Global biotechnology/GM crops commercialization development trend in 2015. China Biotechnol, 2016, 36: 1-11.
[7] 钟永玲. 2007/08年度国内棉花产需形势分析. 农业展望, 2007, (10): 6-10.
Zhong Y L. Analysis of domestic cotton production and demand in 2007/08. Agric Outlook, 2007, (10): 6-10. (in Chinese)
[8] 丰嵘, 张宝红, 郭香墨. 外源Bt基因对棉花产量性状及抗虫性的影响. 棉花学报, 1996, (1): 10-13.
Feng R, Zhang B H, Guo X M. Effects of exorenous Bt gene on yield properties and insect resistance of cotton. Cotton Sci, 1996, (1): 10-13. (in Chinese with English abstract)
[9] 温四民, 董合忠, 辛呈松. Bt棉抗虫性差异表达的研究进展. 河南农业科学, 2007, 36(1): 9-12.
Wen S M, Dong H Z, Xin C S. Research progress on the differential expression of insect resistance of Bt cotton. J Henan Agric Sci, 2007, 36(1): 9-12. (in Chinese with English abstract)
[10] 邢朝柱, 靖深蓉, 崔学芬, 郭立平, 王海林, 袁有禄. 转Bt基因棉杀虫蛋白含量时空分布及对棉铃虫产生抗虫的影响. 棉花学报, 2011, 13: 11-15.
Xing C Z, Jing S R, Cui X F, Guo L P, Wang H L, Yuan Y L. The spatio-temporal distribution of Bt (Bacillus thuringiensis) insecticidal protein and the effect of transgenic Bt cotton on bollworm resistance. Cotton Sci, 2001, 13: 11-15. (in Chinese with English abstract)
[11] 余恩, 蔡芸菲, 赵茹冰, 陈进红, 祝水金. 2个转基因抗虫杂交棉Bt蛋白含量的时空表达特性研究. 浙江大学学报(农业与生命科学版), 2016, 42(1): 17-22.
Yu E, Cai Y F, Zhao R B, Chen J H, Zhu S J. Studies on temporal-spatial expression characters of Bt protein in two transgenic hybrid cotton. J Zhejiang Univ (Agric Life Sci Edn), 2016, 42(1): 17-22. (in Chinese with English abstract)
[12] Pettigrew W T, Adamczyk J J. Nitrogen fertility and planting date effects on lint yield and Cry1Ac (Bt) endotoxin production. Agron J, 2006, 98: 691-697.
doi: 10.2134/agronj2005.0327
[13] Chen Y, Li Y B, Zhou M Y, Rui Q Z, Cai Z Z, Zhang X, Chen D H. Nitrogen (N) application gradually enhances boll development and decreases boll shell insecticidal protein content in N-deficient cotton. Front Plant Sci, 2018, 9: 51.
[14] 陈松, 吴敬音, 何小兰, 黄骏麒, 周宝良, 张荣铣. 转基因抗虫棉组织中Bt毒蛋白表达量的ELISA测定. 江苏农业学报, 1997, 13(3): 27-29.
Chen S, Wu J Y, He X L, Huang J Q, Zhou B L, Zhang R X. Quantification using ELISA of Bacillus thuringiensis insecticidal protein expressed in the tissue of transgenic insect resistant cotton. Jiangsu J Agric Sci, 1997, 13(3): 27-29. (in Chinese with English abstract)
[15] 邵金良, 黎其万, 董宝生, 刘宏程, 束继红. 茚三酮比色法测定茶叶中游离氨基酸总量. 中国食品添加剂, 2008, (2): 162-165.
Shao J L, Li Q W, Dong B S, Liu H C, Shu J H. Determination of total free-amino acid in tea by Nihydrin colorimetry. China Food Add, 2008, (2): 162-165. (in Chinese with English abstract)
[16] 扬州大学农学院. 作物栽培生理研究法实验讲义. 扬州: 扬州大学出版社, 2007. pp 3-6.
Agricultural College of Yangzhou University. Experimental Lecture Notes for Physiological Research Methods of Crop Cultivation. Yangzhou: Yangzhou University Press, 2007. pp 3-6. (in Chinese)
[17] 吴良欢, 蒋式洪, 陶勤南. 植物转氨酶(GOT和GPT)活度比色测定方法及其应用. 土壤通报, 1998, 29(3): 41-43.
Wu L H, Jiang S H, Tao Q N. Plant aminotransferase (GOT and GPT) determination method and its application of activity colorimetric. China J Soil Sci, 1998, 29(3): 41-43. (in Chinese)
[18] Mifin B J, Lea P J. The Biochemistry of Plants. New York: Academic Press, 1980. pp 169-202.
[19] 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2003. pp 129-131.
Zou Q. Experimental Guide of Plant Physiology. Beijing: China Agriculture Press, 2003. pp 129-131. (in Chinese)
[20] Zhou M Y, Liu Z Y, Li L N, Chen Y, Zhang X, Chen D H. Effect of urea spray on boll shell insecticidal protein content in Bt cotton. Front Plant Sci, 2021, 12 : 623504.
[21] 花明明, 衡丽, 胡大鹏, 张雷, 陈源, 陈德华, 张祥. 氮肥对小麦后直播棉生长发育及氮素积累的影响. 江苏农业科学, 2015, 43(12): 73-76.
Hua M M, Heng L, Hu D P, Zhang L, Chen Y, Chen D H, Zhang X. Effects of nitrogen fertilizer on growth and nitrogen accumulation of direct seeding cotton after wheat. Jiangsu Agric Sci, 2015, 43(12): 73-76. (in Chinese)
[22] 王子胜, 徐敏, 刘瑞显, 吴晓东, 朱鹤, 陈兵林, 周治国. 施氮量对不同熟期棉花品种的生物量和氮素累积的影响. 棉花学报, 2011, 23: 537-544.
Wang Z S, Xu M, Liu R X, Wu X D, Zhu H, Chen B L, Zhou Z G. Effects of nitrogen rates on biomass and nitrogen accumulation of cotton with different varieties in growth duration. Cotton Sci, 2011, 23: 537-544. (in Chinese with English abstract)
[23] 胡明芳, 田长彦, 王林霞. 氮肥用量与施用时期对棉花生长发育及土壤矿质氮含量的影响. 西北农林科技大学学报(自然科学版), 2011, 39(11): 103-109.
Hu M F, Tian C Y, Wang L X. Effects of nitrogen rate, applying time on cotton growth and soil mineral nitrogen content. J Northwest A&F Univ (Nat Sci Edn), 2011, 39(11): 103-109. (in Chinese with English abstract)
[24] Maike S, Joseph M, Jan K. Review article: the silence of genes in transgenic plants. Annals Bot, 1997, 79: 3-12.
[25] Fitt G, Finnegan E, Llewellyn D. What is happening to the expression of the insect protection in field-grown INGARD cotton? The Ninth Australian Cotton Conference Proceedings, 1998. pp291-297.
[26] 陈德华, 杨长琴, 陈源, 聂安全, 吴云康. 高温胁迫对Bt棉叶片杀虫蛋白表达量和氮代谢影响的研究. 棉花学报, 2003, 15(5): 288-292.
Chen D H, Yang C Q, Chen Y, Nie A Q, Wu Y K. The effects of the high temperature stress on the leaf Bt protein content and nitrogen metabolism of Bt cotton. Cotton Sci, 2003, 15(5): 288-292. (in Chinese with English abstract)
[27] 张祥, 刘晓飞, 吕春花, 王桂霞, 陈源, 陈德华. 低温对转Bt基因棉杀虫蛋白表达及其氮代谢的影响. 棉花学报, 2012, 24: 159-166.
Zhang X, Liu X F, Lyu C H, Wang G X, Chen Y, Chen D H. Effect of low temperature on the insecticidal properties and nitrogen metabolism of Bt cotton. Cotton Sci, 2012, 24: 159-166. (in Chinese with English abstract)
[28] 陈源, 顾超, 王桂霞, 吕春花, 刘晓飞, 张祥, 陈德华. 蕾期低温及湿度胁迫对Bt棉杀虫蛋白表达量的影响. 作物学报, 2013, 39: 184-189.
doi: 10.3724/SP.J.1006.2013.00184
Chen Y, Gu C, Wang G X, Lyu C H, Liu X F, Zhang X, Chen D H. Effect on stresses of 18℃ and different relative humidities on Bt protein expression at squaring stage in Bt cotton. Acta Agron Sin, 2013, 39: 184-189. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00184
[1] 裴丽珍, 陈远学, 张雯雯, 肖华, 张森, 周元, 徐开未. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响[J]. 作物学报, 2022, 48(8): 2115-2124.
[2] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
[3] 罗凯, 谢琛, 汪锦, 王甜, 何舜, 雍太文, 杨文钰. 外源喷施植物生长调节剂对套作大豆碳氮代谢和花荚脱落的影响[J]. 作物学报, 2021, 47(4): 752-760.
[4] 吕腾飞, 谌洁, 代邹, 马鹏, 杨志远, 郑传刚, 马均. 缓释氮肥与尿素配施对机插杂交籼稻碳氮积累的影响[J]. 作物学报, 2021, 47(10): 1966-1977.
[5] 辛正琦, 代欢欢, 辛余凤, 何潇, 谢海艳, 吴能表. 盐胁迫下外源2,4-表油菜素内酯对颠茄氮代谢及TAs代谢的影响[J]. 作物学报, 2021, 47(10): 2001-2011.
[6] 邹京南,于奇,金喜军,王明瑶,秦彬,任春元,王孟雪,张玉先. 外源褪黑素对干旱胁迫下大豆鼓粒期生理和产量的影响[J]. 作物学报, 2020, 46(5): 745-758.
[7] 刘震宇,王桂霞,李丽楠,蔡泽洲,梁潘潘,吴莘玲,张祥,陈德华. 高温胁迫终止后Bt棉蕾杀虫蛋白的恢复特征及相关生理机制[J]. 作物学报, 2020, 46(3): 440-447.
[8] 党科,宫香伟,陈光华,赵冠,刘龙,王洪露,杨璞,冯佰利. 糜子绿豆带状种植下糜子的氮素积累、代谢及产量变化[J]. 作物学报, 2019, 45(12): 1880-1890.
[9] 卢克欢,刘兴,杨怡,廖志华,吴能表. UV-B胁迫下Ca 2+对颠茄生理特性与次生代谢产物的调控研究[J]. 作物学报, 2018, 44(10): 1527-1538.
[10] 孙永健,孙园园,严奉君,杨志远,徐徽,李玥,王海月,马均. 氮肥后移对不同氮效率水稻花后碳氮代谢的影响[J]. 作物学报, 2017, 43(03): 407-419.
[11] 宋航,周卫霞,袁刘正,靳英杰,李鸿萍,杨艳,尤东玲,李潮海*. 光、氮及其互作对玉米氮素吸收利用和物质生产的影响[J]. 作物学报, 2016, 42(12): 1844-1852.
[12] 衡丽,李亚兵,胡大鹏,王桂霞,吕春花,张祥,陈源,陈德华. 高温胁迫对Bt棉蕾中杀虫蛋白含量及氮代谢的影响[J]. 作物学报, 2016, 42(09): 1374-1380.
[13] 周卫霞,董朋飞,王秀萍,李潮海. 弱光胁迫对不同基因型玉米籽粒发育和碳氮代谢的影响[J]. 作物学报, 2013, 39(10): 1826-1834.
[14] 陈源,顾超,王桂霞,吕春花,刘晓飞,张祥,陈德华. 蕾期低温及湿度胁迫对Bt棉杀虫蛋白表达量的影响[J]. 作物学报, 2013, 39(01): 184-189.
[15] 赵锋, 张卫建, 章秀福, 王丹英, 徐春梅. 连续增氧对不同基因型水稻分蘖期生长和氮代谢酶活性的影响[J]. 作物学报, 2012, 38(02): 344-351.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[2] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[3] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[4] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[5] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .
[6] 黄策;王天铎. 水稻群体物质生产过程的计算机模拟[J]. 作物学报, 1986, (01): 1 -8 .
[7] 陈吉宝;景蕊莲;毛新国;昌小平;王述民. 普通菜豆PvP5CS2基因对逆境胁迫的应答[J]. 作物学报, 2008, 34(07): 1121 -1127 .
[8] 柳武革;王丰;金素娟;朱小源;李金华;刘振荣;廖亦龙;朱满山;黄慧君;符福鸿;刘宜柏. 利用分子标记辅助选择聚合Pi-1和Pi-2基因改良两系不育系稻瘟病抗性[J]. 作物学报, 2008, 34(07): 1128 -1136 .
[9] 张文静;胡宏标;陈兵林;王友华;周治国. 棉花季节桃加厚发育生理特性的差异及与纤维比强度的关系[J]. 作物学报, 2008, 34(05): 859 -869 .
[10] 常丽英;顾东祥;张文宇;杨杰;曹卫星;朱艳. 水稻叶片伸长过程的模拟模型[J]. 作物学报, 2008, 34(02): 311 -317 .