欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (02): 344-351.doi: 10.3724/SP.J.1006.2012.00344

• 耕作栽培·生理生化 • 上一篇    下一篇

连续增氧对不同基因型水稻分蘖期生长和氮代谢酶活性的影响

赵锋1,2,3,张卫建1,章秀福2,*,王丹英2,徐春梅2   

  1. 1 南京农业大学应用生态研究所,江苏南京2100593;2 中国水稻研究所 / 国家水稻生物学重点实验室,浙江杭州310006;3湖北省农业科学院 粮食作物研究所,湖北武汉 430064
  • 收稿日期:2011-05-31 修回日期:2011-10-12 出版日期:2012-02-12 网络出版日期:2011-12-06
  • 通讯作者: 章秀福, E-mail: zhangxf169@ sohu.com, Tel: 0571-63370584
  • 基金资助:

    本研究由国家自然科学基金项目(31171502),浙江省科技专项(2008C02008-1),“比尔和梅琳达•盖茨基金”(51587-15)和浙江省自然科学基金项目(Y3100270)资助。

Effect of Continuous Aeration on Growth and Activity of Enzymes Related to Nitrogen Metabolism of Different Rice Genotypes at Tillering Stage

ZHAO Feng1,2,ZHANG Wei-Jian1,ZHANG Xiu-Fu2,*,WANG Dan-Ying2,XU Chun-Mei2   

  1. 1 Institute of Applied Ecology, Nanjing Agricultural University, Nanjing 210095, China; 2 State Key Laboratory of Rice Biology / China National Rice Research Institute, Hangzhou 310006, China; 3 Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064,China
  • Received:2011-05-31 Revised:2011-10-12 Published:2012-02-12 Published online:2011-12-06
  • Contact: 章秀福, E-mail: zhangxf169@ sohu.com, Tel: 0571-63370584

摘要: 为明确氧对不同基因型水稻生长和氮素代谢的作用机理,以籼稻、粳稻和旱稻品种为材料,采用营养液培养,考察根际连续增氧水稻分蘖期生长和氮代谢状况。结果表明,连续增氧后,各水稻品种叶绿素含量均有所下降,国稻1号(籼稻)地上部分和根系干物质重分别降低44%和40%,巴西陆稻(旱稻)和秀水09 (粳稻)降低不显著。国稻1号和巴西陆稻的氮积累量分别降低35.8%和36.0%。各基因型水稻叶片NRA (硝酸还原酶活性)显著提高,GSA (谷酰胺合成酶活性)下降。秀水09,叶片NRA增加较少(P>0.05)。连续增氧提高了水稻根比表面积和氧化强度;但降低了叶片叶绿素含量和GSA,不利于水稻氮素吸收和干物质积累。不同基因型水稻对连续增氧的响应存在差异。

关键词: 水稻, 连续增氧, 基因型, 根系发育, 氮代谢

Abstract: In order to clarify the role of oxygen in the growth and development of rice and its mechanism of nitrogen, three rice genotypes, i.e., “Guodao 1” (indica), “Xiushui 09” (japonica), and “Brazilian upland rice” (upland rice), were cultured in nutrient solution with continuous aeration to measure the growth-related parameters and the activity of enzymes related to nitrogen metabolism at tillering stage. The results showed that, compared with the control, lower chlorophyll content in leaves was found in all the genotypes. The dry weights of shoots and roots were decreased by 44% and 40% for “Guodao 1” under continuous aeration, respectively, whereas no significant effects were observed for the “Brazilian upland rice” and “Xiushui 09”. The root length, specific surface area, and the intensity of α-naphthylamine oxidation of roots were increased significantly by continuous aeration, irrespective of the genotypes. The nitrogen accumulation in the “Guodao 1” and “Brazilian upland rice” under aeration was reduced by 35.8% and 36%, respectively. Therefore, the nitrate reductase activity (NRA) in leaves was significantly increased, while the glutamine synthetase activity (GSA) was decreased under aeration. The NRA in leaves of “Xiushui 09” under continuous aeration tended to increase (P > 0.05) in comparison to the control. Thus, continuous aeration could increase the surface area and oxidation intensity in rice roots, and reduce the chlorophyll content and GSA in rice leaves, which may reduce nitrogen absorption and dry matter accumulation. In addition, these were significant differences in responses of rice genotypes to continuous aeration.

Key words: Rice, Continuous aeration, Genotypes, Root development, Nitrogen metabolism

[1]Fan J B, Zhang Y L, Turner D, Duan Y H, Wang D S, Sheng Q R. Root physiological and morphological characteristics of two rice cultivars with different nitrogen-use efficiency. Pedosphere, 2010, 20: 446–455
[2]Amara W, Hank G, Campbell J T. The use of agar nutrient solution to simulate lack of convection in waterlogged soils. Ann Bot, 1996, 80: 115–123
[3]Kirk G J D. Rice root properties for internal aeration and efficient nutrient acquisition in submerged soil. New Phytol, 2003, 159: 185–194
[4]Wang X-L(汪晓丽), Feng K(封克), Sheng H-J(盛海君), Chen P(陈平). Kinetics of nitrate uptake by different rice genotypes and the effects of ammonium on nitrate uptake at the seedling stage. Sci Agric Sin (中国农业科学), 2003, 36(11): 1306–1310 (in Chinese with English abstract)
[5]Jampeetong A, Brix H. Oxygen stress in Salvinia natans: interactive effects of oxygen availability and nitrogen source. Environ Exp Bot, 2009, 66: 153–159
[6]Wang X B, Wu P, Hu B, Cheng Q S. Effects of nitrate on the growth of lateral root and nitrogen absorption in rice. Acta Bot Sin, 2002, 44: 678–683
[7]Wang X Z, Zhu J G, Gao R, Yasukazu H, Feng K. Nitrogen cycling and losses under rice-wheat rotations with coated urea and urea in the Taihu lake region. Pedosphere, 2007, 17: 62–69
[8]Zou C-Q(邹春琴), Fan X-Y(范晓云), Shi R-L(石荣丽), Zhang F-S(张福锁). Effect of ammonium and nitrate nitrogen on the growth and iron nutrition of up- and lowland rice. J China Agric Univ (中国农业大学学报), 2007, 12(14): 45–49 (in Chinese with English abstract)
[9]Kant S, Kafkafi U. Ammonium and nitrate as a nitrogen source for plants. Adv Plant Physiol, 2003, 5: 463–478
[10]Duan Y H, Zhang Y L, Shen Q R, Wang S W. Nitrate effect on rice growth and nitrogen absorption and assimilation at different growth stages. Pedosphere, 2006, 16: 707–717
[11]Kronzucker H J, Siddiqi M Y, Glass A D M, Kirk G J D. Nitrate ammonium synergism in rice: a subcellular flux analysis. Plant Physiol, 1991: 1041–1045
[12]Yoshida S, Forno D A, Cock J H, Gomez K A. Laboratory Manual for Physiological Studies of Rice. Manila, Philippines: IRRI, 2006
[13]Mu Z X, Zhang S Q, Zhang L S, Liang A H, Liang Z S. Hydraulic conductivity of whole root system is better than hydraulic conductivity of single root in correlation with the leaf water status of maize. Bot Stud, 2006, 47: 145–151
[14]Tachibana S, Konishi N. Diurnal variation of in vivo and in vitro nitrate reductase activity in cucumber plants. J Jpn Soc Hort Sci, 1991, 60: 593–599
[15]Zhao S-J(赵世杰), Shi G-A(史国安), Dong X-C(董新纯). Laboratory Guide for Plant Physiology (植物生理学实验指导). Beijing: China Agricultural Science and Technology Press, 2002. p 47 (in Chinese)
[16]Akira Y. The Root System: a dynamic Dynamic Integration of Components Differing in Morphology and Function. Proceeding of the 6th Symposium of the International Society of Root Research. Nagoya, Japan, November 11–15, 2001. pp 2–3
[17]Armstrong J, Armstrong W. Rice: sulphide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Ann Bot, 2005, 96: 625–638
[18]Malik A I, Colmer T D, Lambers H, Schortemeyer M. Aerenchyma formation and radial O2 loss along adventitious roots of wheat with only the apical root portion exposed to O2 deficiency. Plant Cell Environ, 2003, 26: 1713–1722
[19]Mcdonald M P, Galwey N W, Colmer T D. Similarity and diversity in adventitious root anatomy as related to root aeration among a range of wetland and dryland grass species. Plant Cell Environ, 2002, 25: 441–451
[20]Pezeshki S R, Delaune R D. Responses of Spartina alterniflora and Spartina patens to rhizosphere oxygen deficiency. Acta Oecol, 1996, 17: 365–378
[21]Deng D(邓丹), Wu K-W(吴可为), Deng H(邓泓). Effects of zone oxygenation on growth and Cd accumulation in paddy rice (Oryza sativa L.). Acta Ecol Sin (生态学报), 2009, 29(5): 2520–2526 (in Chinese with English abstract)
[22]Colmer T D. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann Bot, 2003, 91: 301–309
[23]Vartapetian B B. Plant anaerobic stress as a novel trend in ecological physiology, biochemistry and molecular biology: 2. Further development of the problem. Russian J Plant Physiol, 2007, 53: 711–738
[24]Delaune R D, Pezeshki S R, Pardue J H. Anoxidation-reduction buffer for evaluating physiological response of plants to root oxygen stress. Environ Exp Bot, 2005, 30: 243–247
[25]Wang D-Y(王丹英), Han B(韩勃), Zhang X-F(章秀福). Effect of oxygen content in rice rhizosphere on growth of the roots. Acta Agron Sin (作物学报), 2008, 34(5): 803–808 (in Chinese with English abstract)
[26]Liesack W, Schnell S, Revsbech N P. Microbiology of flooded rice paddies. FEMS Microbiol Rev, 2000, 24: 625–645
[27]Zhao F(赵锋), Xu C-M(徐春梅), Zhang W-J(张卫建), Zhang X-F(章秀福), Cheng J-P(程建平), Wang D-Y(王丹英). Effect of rhizosphere dissolution oxygen and nitrogen form on root traits and N accumulation. Chin J Rice Sci, 2011, 25(3): 195–200 (in Chinese with English abstract)
[28]Zhu L-F(朱练峰), Liu X(刘学), Yu S-M(禹盛苗), Ou-Yang Y-N(欧阳由男), Jin Q-Y(金千瑜). Effect of aerated irrigation on physiological characteristics and senescence at late growth stage of rice. Chin J Rice Sci (中国水稻科学), 2010, 24(3): 257–263 (in Chinese with English abstract)
[29]Zhao F(赵锋), Wang D-Y(王丹英), Xu C-M(徐春梅), Zhang W-J(张卫建), Li F-B(李凤博), Mao H-J(毛海军), Zhang X-F(章秀福). Response of morphological, physiological and yield characteristics of rice (Oryza sativa L.) to different oxygen-increasing patterns in rhizosphere. Acta Agron Sin (作物学报), 2010, 36(2): 303–312 (in Chinese with English abstract)
[30]Lee K W, Chen P W, Lu C A, Chen S, David Ho T H, Yu S M. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Sci Signal, 2009, 2(91): ra61
[31]Ponnampernma F N. The chemistry of submerged soils. Adv Agron,1972, 24: 29–96
[32]Colmer T D, Cox C H, Voesenek L A. Root aeration in rice (Oryza sativa): Evaluation of oxygen ,carbon dioxide, and ethylene as possible regulations of root acclimatizations. New Phytol, 2006, 170: 767–778
[33]Kirk G J D. Rice root properties for internal aeration and efficient nutrient acquisition in submerged soil. New Phytol, 2003, 159: 185–194
[34]Li Y(李勇), Zhou Y(周毅), Guo S-W(郭世伟), Shen Q-R(沈其荣). Effects of different N forms on root morphology and water absorption of lowland and upland rice plants. Chin J Rice Sci (中国水稻科学), 2007, 21(3): 294–298 (in Chinese with English abstract)
[35]Wallsgrove R M, Turner J C, Hall N P, Kendall A C, Bright S W J. Barley mutants lacking chloroplast glutamine synthetase biochemical and genetic analysis. Plant Physiol, 1987, 83: 155–158
[36]Robinson J M, Baysdorfer C. Inter-relationship between photosynthetic carbon and nitrogen metabolism in mature soybean leaves and isolated leaf mesophyll cells. In: Health R L, Preiss J, eds. Carbon Partitioning in Photosynthetic Tissue. American Society of Plant Physiology, Rockville, MD. 1985. pp. 333–357
[37]Rufty T W, Huber S C, Volk R J. Alternations in leaf carbohydrate metabolism in response to nitrogen stress. Plant Physiol, 1988, 88: 725–730
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!