作物学报 ›› 2012, Vol. 38 ›› Issue (02): 344-351.doi: 10.3724/SP.J.1006.2012.00344
赵锋1,2,3,张卫建1,章秀福2,*,王丹英2,徐春梅2
ZHAO Feng1,2,ZHANG Wei-Jian1,ZHANG Xiu-Fu2,*,WANG Dan-Ying2,XU Chun-Mei2
摘要: 为明确氧对不同基因型水稻生长和氮素代谢的作用机理,以籼稻、粳稻和旱稻品种为材料,采用营养液培养,考察根际连续增氧水稻分蘖期生长和氮代谢状况。结果表明,连续增氧后,各水稻品种叶绿素含量均有所下降,国稻1号(籼稻)地上部分和根系干物质重分别降低44%和40%,巴西陆稻(旱稻)和秀水09 (粳稻)降低不显著。国稻1号和巴西陆稻的氮积累量分别降低35.8%和36.0%。各基因型水稻叶片NRA (硝酸还原酶活性)显著提高,GSA (谷酰胺合成酶活性)下降。秀水09,叶片NRA增加较少(P>0.05)。连续增氧提高了水稻根比表面积和氧化强度;但降低了叶片叶绿素含量和GSA,不利于水稻氮素吸收和干物质积累。不同基因型水稻对连续增氧的响应存在差异。
[1]Fan J B, Zhang Y L, Turner D, Duan Y H, Wang D S, Sheng Q R. Root physiological and morphological characteristics of two rice cultivars with different nitrogen-use efficiency. Pedosphere, 2010, 20: 446–455 [2]Amara W, Hank G, Campbell J T. The use of agar nutrient solution to simulate lack of convection in waterlogged soils. Ann Bot, 1996, 80: 115–123 [3]Kirk G J D. Rice root properties for internal aeration and efficient nutrient acquisition in submerged soil. New Phytol, 2003, 159: 185–194 [4]Wang X-L(汪晓丽), Feng K(封克), Sheng H-J(盛海君), Chen P(陈平). Kinetics of nitrate uptake by different rice genotypes and the effects of ammonium on nitrate uptake at the seedling stage. Sci Agric Sin (中国农业科学), 2003, 36(11): 1306–1310 (in Chinese with English abstract) [5]Jampeetong A, Brix H. Oxygen stress in Salvinia natans: interactive effects of oxygen availability and nitrogen source. Environ Exp Bot, 2009, 66: 153–159 [6]Wang X B, Wu P, Hu B, Cheng Q S. Effects of nitrate on the growth of lateral root and nitrogen absorption in rice. Acta Bot Sin, 2002, 44: 678–683 [7]Wang X Z, Zhu J G, Gao R, Yasukazu H, Feng K. Nitrogen cycling and losses under rice-wheat rotations with coated urea and urea in the Taihu lake region. Pedosphere, 2007, 17: 62–69 [8]Zou C-Q(邹春琴), Fan X-Y(范晓云), Shi R-L(石荣丽), Zhang F-S(张福锁). Effect of ammonium and nitrate nitrogen on the growth and iron nutrition of up- and lowland rice. J China Agric Univ (中国农业大学学报), 2007, 12(14): 45–49 (in Chinese with English abstract) [9]Kant S, Kafkafi U. Ammonium and nitrate as a nitrogen source for plants. Adv Plant Physiol, 2003, 5: 463–478 [10]Duan Y H, Zhang Y L, Shen Q R, Wang S W. Nitrate effect on rice growth and nitrogen absorption and assimilation at different growth stages. Pedosphere, 2006, 16: 707–717 [11]Kronzucker H J, Siddiqi M Y, Glass A D M, Kirk G J D. Nitrate ammonium synergism in rice: a subcellular flux analysis. Plant Physiol, 1991: 1041–1045 [12]Yoshida S, Forno D A, Cock J H, Gomez K A. Laboratory Manual for Physiological Studies of Rice. Manila, Philippines: IRRI, 2006 [13]Mu Z X, Zhang S Q, Zhang L S, Liang A H, Liang Z S. Hydraulic conductivity of whole root system is better than hydraulic conductivity of single root in correlation with the leaf water status of maize. Bot Stud, 2006, 47: 145–151 [14]Tachibana S, Konishi N. Diurnal variation of in vivo and in vitro nitrate reductase activity in cucumber plants. J Jpn Soc Hort Sci, 1991, 60: 593–599 [15]Zhao S-J(赵世杰), Shi G-A(史国安), Dong X-C(董新纯). Laboratory Guide for Plant Physiology (植物生理学实验指导). Beijing: China Agricultural Science and Technology Press, 2002. p 47 (in Chinese) [16]Akira Y. The Root System: a dynamic Dynamic Integration of Components Differing in Morphology and Function. Proceeding of the 6th Symposium of the International Society of Root Research. Nagoya, Japan, November 11–15, 2001. pp 2–3 [17]Armstrong J, Armstrong W. Rice: sulphide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Ann Bot, 2005, 96: 625–638 [18]Malik A I, Colmer T D, Lambers H, Schortemeyer M. Aerenchyma formation and radial O2 loss along adventitious roots of wheat with only the apical root portion exposed to O2 deficiency. Plant Cell Environ, 2003, 26: 1713–1722 [19]Mcdonald M P, Galwey N W, Colmer T D. Similarity and diversity in adventitious root anatomy as related to root aeration among a range of wetland and dryland grass species. Plant Cell Environ, 2002, 25: 441–451 [20]Pezeshki S R, Delaune R D. Responses of Spartina alterniflora and Spartina patens to rhizosphere oxygen deficiency. Acta Oecol, 1996, 17: 365–378 [21]Deng D(邓丹), Wu K-W(吴可为), Deng H(邓泓). Effects of zone oxygenation on growth and Cd accumulation in paddy rice (Oryza sativa L.). Acta Ecol Sin (生态学报), 2009, 29(5): 2520–2526 (in Chinese with English abstract) [22]Colmer T D. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann Bot, 2003, 91: 301–309 [23]Vartapetian B B. Plant anaerobic stress as a novel trend in ecological physiology, biochemistry and molecular biology: 2. Further development of the problem. Russian J Plant Physiol, 2007, 53: 711–738 [24]Delaune R D, Pezeshki S R, Pardue J H. Anoxidation-reduction buffer for evaluating physiological response of plants to root oxygen stress. Environ Exp Bot, 2005, 30: 243–247 [25]Wang D-Y(王丹英), Han B(韩勃), Zhang X-F(章秀福). Effect of oxygen content in rice rhizosphere on growth of the roots. Acta Agron Sin (作物学报), 2008, 34(5): 803–808 (in Chinese with English abstract) [26]Liesack W, Schnell S, Revsbech N P. Microbiology of flooded rice paddies. FEMS Microbiol Rev, 2000, 24: 625–645 [27]Zhao F(赵锋), Xu C-M(徐春梅), Zhang W-J(张卫建), Zhang X-F(章秀福), Cheng J-P(程建平), Wang D-Y(王丹英). Effect of rhizosphere dissolution oxygen and nitrogen form on root traits and N accumulation. Chin J Rice Sci, 2011, 25(3): 195–200 (in Chinese with English abstract) [28]Zhu L-F(朱练峰), Liu X(刘学), Yu S-M(禹盛苗), Ou-Yang Y-N(欧阳由男), Jin Q-Y(金千瑜). Effect of aerated irrigation on physiological characteristics and senescence at late growth stage of rice. Chin J Rice Sci (中国水稻科学), 2010, 24(3): 257–263 (in Chinese with English abstract) [29]Zhao F(赵锋), Wang D-Y(王丹英), Xu C-M(徐春梅), Zhang W-J(张卫建), Li F-B(李凤博), Mao H-J(毛海军), Zhang X-F(章秀福). Response of morphological, physiological and yield characteristics of rice (Oryza sativa L.) to different oxygen-increasing patterns in rhizosphere. Acta Agron Sin (作物学报), 2010, 36(2): 303–312 (in Chinese with English abstract) [30]Lee K W, Chen P W, Lu C A, Chen S, David Ho T H, Yu S M. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Sci Signal, 2009, 2(91): ra61 [31]Ponnampernma F N. The chemistry of submerged soils. Adv Agron,1972, 24: 29–96 [32]Colmer T D, Cox C H, Voesenek L A. Root aeration in rice (Oryza sativa): Evaluation of oxygen ,carbon dioxide, and ethylene as possible regulations of root acclimatizations. New Phytol, 2006, 170: 767–778 [33]Kirk G J D. Rice root properties for internal aeration and efficient nutrient acquisition in submerged soil. New Phytol, 2003, 159: 185–194 [34]Li Y(李勇), Zhou Y(周毅), Guo S-W(郭世伟), Shen Q-R(沈其荣). Effects of different N forms on root morphology and water absorption of lowland and upland rice plants. Chin J Rice Sci (中国水稻科学), 2007, 21(3): 294–298 (in Chinese with English abstract) [35]Wallsgrove R M, Turner J C, Hall N P, Kendall A C, Bright S W J. Barley mutants lacking chloroplast glutamine synthetase biochemical and genetic analysis. Plant Physiol, 1987, 83: 155–158 [36]Robinson J M, Baysdorfer C. Inter-relationship between photosynthetic carbon and nitrogen metabolism in mature soybean leaves and isolated leaf mesophyll cells. In: Health R L, Preiss J, eds. Carbon Partitioning in Photosynthetic Tissue. American Society of Plant Physiology, Rockville, MD. 1985. pp. 333–357 [37]Rufty T W, Huber S C, Volk R J. Alternations in leaf carbohydrate metabolism in response to nitrogen stress. Plant Physiol, 1988, 88: 725–730 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
|