欢迎访问作物学报,今天是

作物学报 ›› 2026, Vol. 52 ›› Issue (2): 631-643.doi: 10.3724/SP.J.1006.2026.41094

• 研究简报 • 上一篇    下一篇

山东北部沿海平原区小麦-玉米周年两吨粮超高产技术创建

林子晴1,**,钟醒宇1,**,刘樊1,任子澳1,马瑞1,邓秀峰2,王东伟2,刘少鹏2,陈康3,张明才1,李召虎1,周于毅1,*,段留生1,*   

  1. 1 中国农业大学农学院, 北京100193; 2 莱州金海种业有限公司, 山东莱州261400; 3 烟台市农业技术推广中心, 山东烟台264001
  • 收稿日期:2024-12-19 修回日期:2025-11-18 接受日期:2025-11-18 出版日期:2026-02-12 网络出版日期:2025-11-24
  • 基金资助:
    本研究由农业科技重大项目资助。

Development of ultra-high-yield technology for a wheat-maize double cropping system achieving a 2-ton annual grain yield per mu in the coastal plain of Northern Shandong peninsula

Lin Zi-Qing1,**, Zhong Xing-Yu1,**, Liu Fan1, Ren Zi-Ao1, Ma Rui1, Deng Xiu-Feng2, Wang Dong-Wei2, Liu Shao-Peng2, Chen Kang3,Zhang Ming-Cai1,Li Zhao-Hu1,Zhou Yu-Yi1,*,Duan Liu-Sheng1,*   

  1. 1 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; 2 Laizhou Jinhai Seed Industry Co., Ltd., Laizhou 261400, Shandong, China; 3 Yantai Agricultural Technology Extension Center, Yantai 264001, Shandong, China
  • Received:2024-12-19 Revised:2025-11-18 Accepted:2025-11-18 Published:2026-02-12 Published online:2025-11-24
  • Supported by:
    This study was supported by the Agricultural Science and Technology Major Project.

摘要: 山东北部沿海平原区小麦-玉米周年两吨粮超高产技术创建中国农业大学作物化控团队和莱州市金海种业在山东省莱州市开展的一项重要农业生产示范项目。通过精选良种、合理密植及水肥一体化等措施,以期实现小麦和玉米的高产高效种植。在2023年该地块小麦和玉米两季的种植中,现场实测每公顷的总产量达到了31,323.90 kg (折合2088.26 kg mu?1)。其中冬小麦由农业农村部组织专家测产打破了黄淮海地区小麦的单产纪录,实际产量高达13,213.35 kg hm?2 (折合880.89 kg mu?1)。种植品种烟农1212每平方米穗数为692.0,穗粒数为40.1,千粒重为52.55 g,单株产量为4.74 g,收获指数为0.56,水分利用效率为3.24 kg m-3。夏玉米中金玉2513的每平方米穗数为9.1,穗粒数为584.7,千粒重为379.31 g,单株产量为206.25 g,收获指数为0.58,水分利用效率为2.86 kg m-3,实际产量为18,110.55 kg hm?2 (折合1207.37 kg mu?1)2024年的重复试验中,小麦-玉米的实际产量继续达到30,997.00 kg hm?2 (折合2065.13 kg mu?1)本文旨在总结高产纪录小麦-玉米复种高产田生产过程的主要管理环节和高产群体的主要指标,为山东北部沿海平原区小麦-玉米复种高产提供参考。

关键词: 小麦-玉米周年复种, 超高产技术创建, 山东北部沿海平原区, 良种选择, 水肥一体化

Abstract: The development of ultra-high-yield technology for a wheat-maize double cropping system targeting an annual grain yield of 2 tons per mu in the coastal plain of northern Shandong Peninsula represents a significant agricultural initiative led by the Crop Chemical Control Center of China Agricultural University and Laizhou Jinhai Seed Industry in Laizhou, Shandong province. Through the careful selection of superior varieties, optimized planting densities, and integrated water and fertilizer management, high grain yields and efficient cultivation of both wheat and maize have been achieved. In the 2023 growing season, the combined yield of wheat and maize reached 31,323.90 kg hm?2 (2,088.26 kg mu?1). Notably, the winter wheat crop—evaluated by experts organized by the Ministry of Agriculture and Rural Affairs—set a new regional yield record for the Huang-Huai-Hai Plain, with an actual yield of 13,213.35 kg hm?2 (880.89 kg mu?1). The variety Yannong 1212 exhibited a spike density of 692.0 spikes m?2, an average of 40.1 grains per spike, a thousand-grain weight of 52.55 g, single-plant yield of 4.74 g, harvest index of 0.56, and water use efficiency (WUE) of 3.24 kg m?3. For summer maize, the variety Zhongjinyu 2513 achieved a spike density of 9.1 spikes m?2, an average of 584.7 grains per spike, a thousand-grain weight of 379.31 g, single-plant yield of 206.25 g, harvest index of 0.58, and WUE of 2.86 kg m?3, with an actual yield of 18,110.55 kg hm?2 (1,207.37 kg mu?1). In 2024 repeated trial, the total yield remained high at 30,997.00 kg hm?2 (2,065.13 kg mu?1). This study summarizes the key management practices and main agronomic indicators contributing to high-yield wheat-maize double cropping in northern Shandong, offering a valuable reference for similar production systems in the region.

Key words: wheat-maize annual double cropping, development of ultra-high-yield technology, Northern Shandong peninsula, selective superior varieties, water and fertilizer integration

[1] 徐佳利, 周太东. 全球粮食危机与中国应对策略. 国际经济合作, 2024(2), 32–43.

Xu J L, Zhou T D. Global food crisis and China’s countermeasures. J Int Econ Coop, 2024(2), 32–43 (in Chinese with English abstract).

[2] 于台泽, 贾伟, 安晓慧, . 轮作种植制度的生态经济效益分析及发展建议. 中国农学通报, 2022, 38(26): 150–157

Yu T Z, Jia W, An X H, et al. Ecological and economic benefit analysis of crop rotation and development suggestions. Chin Agric Sci Bull, 2022, 38(26): 150–157 (in Chinese with English abstract).

[3] 王玉英, 胡春胜, 董文旭, . 华北平原小麦-玉米轮作系统碳中和潜力及固碳措施. 中国生态农业学报(中英文), 2022, 30: 651–657.

Wang Y Y, Hu C S, Dong W X, et al. Carbon neutralization potential and carbon sequestration efforts in a wheat-maize rotation system in the North China Plain. Chin J Eco-Agric, 2022, 30: 651–657 (in Chinese with English abstract).

[4] 亳州市农业农村局. 全国小麦单产新纪录在涡阳诞生. (2023-06-14) [2025-01-01]. https://nyncj.bozhou.gov.cn/News/show/612814.html.

Bozhou Municipal Bureau of Agriculture and Rural Affairs. A new national record for wheat yield per unit area was set in Guoyang. (2023-06-14) [2025-01-01]. https://nyncj.bozhou.gov.cn/News/show/612814.html (in Chinese).

[5] 程雅婷, 李荣发, 王克如, . 中国春玉米高产纪录的创造与思考. 玉米科学, 2021, 29(2): 56–59.

Cheng Y, Li R F, Wang K R, et al. Creation and thinking of China’s spring maize high-yield record. J Maize Sci, 2021, 29(2): 56–59 (in Chinese with English abstract).

[6] 杨慧敏, 杨云马, 黄少辉, . 优化施肥对小麦-玉米轮作体系产量、养分平衡与生态环境效益的影响. 中国生态农业学报(中英文), 2023, 31: 699–709

Yang H M, Yang Y M, Huang S H, et al. Effects of optimized fertilization on yield, nutrient balance, and eco-environmental benefits in wheat-maize rotation system. Chin J Eco-Agric, 2023, 31: 699–709 (in Chinese with English abstract).

[7] 莱州市人民政府. 我市玉米高产攻关田喜获丰收再创佳绩. (2023-11-09) [2025-01-01]. http://www.laizhou.gov.cn/art/2023/11/9/art_23204_2966492.html.

Laizhou Municipal People’s Government. The high-yield maize research fields in our city have achieved a bumper harvest and made new achievements again. (2023-11-09) [2025-01-01]. http://www.laizhou.gov.cn/art/2023/11/9/art_23204_2966492.html (in Chinese).

[8] 莱州市人民政府. 农业生产再传喜报 我市粮食总产实现二十连丰. (2023-12-27) [2025-01-01]. http://www.laizhou.gov.cn/art/2023/12/27/art_44605_2967861.html.

Laizhou Municipal People’s Government. Another good news comes from agricultural production: the total grain output of our city has achieved “20 consecutive years of bumper harvests”. (2023-12-27) [2025-01-01]. http://www.laizhou.gov.cn/art/2023/12/27/art_44605_2967861.html (in Chinese).

[9] 李涛, 李振兰, 王军海, . 1971–2015年莱州市日照变化特征分析. 现代农业科技, 2016(5): 270–271.

Li T, Li Z L, Wang J H, et al. Analysis of the variation characteristics of sunshine duration in Laizhou city from 1971 to 2015. Mod Agric Sci Technol, 2016(5): 270–271 (in Chinese with English abstract).

[10] 王倩茜, 孙晓辉, 殷岩, . 小麦新品种烟农1212的选育及其配套栽培技术. 安徽农学通报, 2019, 25(8): 38.

Wang Q Q, Sun X H, Yin Y, et al. Breeding of new wheat variety Yannong 1212 and systematic cultivation techniques. Anhui Agric Sci Bull, 2019, 25(8): 38 (in Chinese with English abstract).

[11] 苏玉环, 刘保华, 王雪香, . 植物生长调节剂麦巨金对冬小麦产量及抗倒性的影响. 河北农业科学, 2014, 18(2): 36–38.

Su Y H, Liu B H, Wang X X, et al. Effects of plant growth regulator Maijujin on yield and lodging resistance of winter wheat. J Hebei Agric Sci, 2014, 18(2): 36–38 (in Chinese with English abstract).

[12] 张飞雪, 陈峰, 张书红, . 不同植物生长调节剂对冬小麦生长及产量的影响. 肥料与健康, 2023(6): 58–61.

Zhang F X, Chen F, Zhang S H, et al. Effects of different plant growth regulators on growth and yield of winter wheat. Fert Health, 2023(6): 58–61 (in Chinese with English abstract).

[13] 曹统一. 独脚金内酯及其类似物对冬小麦分蘖的调控效应. 中国农业大学硕士学位论文, 北京, 2022.

Cao T Y. Effect of Strigolactone and Strigolactone Analogue on Tillering of Winter Wheat. MS Thesis of China Agricultural University, Beijing, China, 2022 (in Chinese with English abstract).

[14] Zou H Y, Fan J L, Zhang F C, et al. Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China. Agric Water Manag, 2020, 230: 105986.

[15] 黄志刚, 王小立, 肖烨, . 气候变化对松嫩平原水稻灌溉需水量的影响. 应用生态学报, 2015, 26: 260–268.

Huang Z J, Wang X L, Xiao Y, et al. Effect of climate change on rice irrigation water requirement in Songnen Plain, Northeast China. Chin J Appl Ecol, 2015, 26: 260–268 (in Chinese with English abstract).

[16] 明博, 谢瑞芝, 侯鹏, . 2005–2016年中国玉米种植密度变化分析. 中国农业科学, 2017, 50: 1960–1972.

Ming B, Xie R Z, Hou P, et al. Analysis of maize planting density changes in China from 2005 to 2016. Sci Agric Sin, 2017, 50: 1960–1972 (in Chinese with English abstract).

[17] 王明杰, 张佳琪, 武敏桦, . 30%胺鲜酯·乙烯利水剂(玉黄金)对密植春玉米茎折强度及生理特性的影响. 江苏农业科学, 2022, 50(20): 101–107.

Wang M J, Zhang J Q, Wu M H, et al. Effects of 30% amine glyphosate ethephon aquatic solution (Yuhuangjin) on lodging strength and physiological characteristics of densely planted spring maize. Jiangsu Agric Sci, 2022, 50(20): 101-107 (in Chinese with English Abstract).

[18] 马瑞. 减叶去冗对玉米发育与产量形成的影响. 中国农业大学硕士学位论文, 北京, 2022.

Ma R. The Impact of Leaf Removal on Maize Development and Yield Formation. MS Thesis of China Agricultural University, Beijing, China, 2022 (in Chinese with English abstract).

[19] 徐芳, 何建强, 朱晓华, . 利用APSIM模型评估播期和种植密度对关中玉米气候生产力的影响. 陕西气象, 2022(1): 59–65.

Xu F, He J Q, Zhu X H, et al. Evaluation of the impact of sowing date and planting density on climate productivity of maize in Guanzhong region by the APSIM model. J Shaanxi Meteor, 2022(1): 59–65 (in Chinese with English Abstract).

[20] 褚旭, 李帅, 赵亚南, . 施氮量和种植密度对玉米产量及磷钾吸收利用的影响. 中国农业科技导报, 2020, 22(12): 115–126.

Chu X, Li S, Zhao Y N, et al. Effects of nitrogen application amount and planting density on maize yield, phosphorus and potassium uptake and utilization. J Agric Sci Technol, 2020, 22(12): 115–126 (in Chinese with English abstract).

[21] Yao H S, Zhang Y L, Yi X P, et al. Cotton responds to different plant population densities by adjusting specific leaf area to optimize canopy photosynthetic use efficiency of light and nitrogen. Field Crops Res, 2016, 188: 10–16.

[22] 郑霞, 马娟娟, 孙西欢, . 不同灌溉施肥方式下土壤氮素运移研究综述. 山西水利, 2011, 27(9): 27–28.

Zheng X, Ma J J, Sun X H, et al. Review on soil nitrogen transport under different irrigation and fertilization methods. Shanxi Water Resour, 2011, 27(9): 27–28 (in Chinese).

[23] Fageria N K, Barbosa Filho M P, Moreira A, et al. Foliar fertilization of crop plants. J Plant Nutr, 2009, 32: 1044–1064.

[24] 孙亮, 陈存广, 刘艳慧. 植保无人机在玉米病虫害防治中的应用. 农业工程技术, 2023, 43(23): 89–90.

Sun L, Chen C G, Liu Y H. Application of unmanned aerial vehicles in corn pest and disease control. Agric Eng Technol, 2023, 43(23): 89–90 (in Chinese with English abstract).

[25] Sacks W J, Kucharik C J. Crop management and phenology trends in the U.S. Corn Belt: impacts on yields, evapotranspiration and energy balance. Agric For Meteor, 2011, 151: 882–894.

[26] 王家庭, 盛楠. 粮食安全保障研究:回顾、评价与展望. 创新, 2023, 17(4): 97–105.

Wang J T, Sheng N. Research on food security assurance: Review, evaluation, and prospects. Innovation, 2023, 17(4): 97–105 (in Chinese with English abstract).

[1] 宋利, 刘广周, 张华, 卢庭启, 卿春燕, 杨云山, 郭晓霞, 胡单, 李少昆, 侯鹏. 密植滴灌水肥一体化对西南夏玉米产量及土壤细菌群落的影响[J]. 作物学报, 2025, 51(4): 992-1004.
[2] 王雪, 谷淑波, 林祥, 王威雁, 张保军, 朱俊科, 王东. 微喷补灌水肥一体化对冬小麦产量及水分和氮素利用效率的影响[J]. 作物学报, 2023, 49(3): 784-794.
[3] 付江鹏,贺正,贾彪,刘慧芳,李振洲,刘志. 滴灌玉米临界氮稀释曲线与氮素营养诊断研究[J]. 作物学报, 2020, 46(02): 290-299.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .