欢迎访问作物学报,今天是

作物学报 ›› 2026, Vol. 52 ›› Issue (2): 644-652.doi: 10.3724/SP.J.1006.2026.55045

• 研究简报 • 上一篇    

花生机械脱壳损伤相关农艺指标筛选与QTL定位

张胜忠1,李国卫1,戈立江2,王菲菲1,胡晓辉1,苗华荣1,*,李燕3,钟文4,陈静1,*   

  1. 1 山东省农业科学院, 山东济南250100; 2 山东职业学院, 山东济南250104; 3 招远市农业技术推广中心, 山东烟台265400; 4 山东省种子管理总站, 山东济南250100
  • 收稿日期:2025-07-16 修回日期:2025-10-30 接受日期:2025-10-30 出版日期:2026-02-12 网络出版日期:2025-11-07
  • 通讯作者: 苗华荣, E-mail:1949813628@qq.com; 陈静, E-mail: mianbaohua2008@126.com
  • 基金资助:
    本研究由国家重点研发计划项目(2023YFD1202800), 山东省自然科学基金项目(ZR2022MC045)和山东省农业科学院重大科技成果培育工程项目(CXGC2025E02)资助。

Screening and QTL mapping for mechanical shelling damage related traits in peanut

Zhang Sheng-Zhong1,Li Guo-Wei1,Ge Li-Jiang2,Wang Fei-Fei1,Hu Xiao-Hui1,Miao Hua-Rong1,*,Li Yan3,Zhong Wen4,Chen Jing1,*   

  1. 1 Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China; 2 Shandong Polytechnic, Jinan 250104, Shandong, China; 3 Zhaoyuan Agricultural Technology Extension Service Center, Yantai 265400, Shandong, China; 4 Shandong Provincial Seed Management Station, Jinan 250100, Shandong, China
  • Received:2025-07-16 Revised:2025-10-30 Accepted:2025-10-30 Published:2026-02-12 Published online:2025-11-07
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2023YFD1202800), Natural Science Foundation of Shandong Province (ZR2022MC045), and Major Scientific and Technological Achievements Cultivation Program of Shandong Academy of Agricultural Sciences (CXGC2025E02).

摘要: 为筛选影响花生机械脱壳质量的农艺性状和探索其遗传基础,本研究利用63个高世代品系,选取3个荚果或籽仁相关性状(出仁率、荚果破损压力和籽仁破损压力),分别与籽仁损伤率性状进行相关性分析。结果表明,仅籽仁破损压力与籽仁损伤率呈现显著相关。此外,从上述高世代品系中筛选到2个籽仁损伤率低于2.50%的品系材料D9和E10。进一步针对籽仁破损压力性状,以品种花育36号和6-13配组衍生的包含181个家系的重组自交系(recombinant inbred line, RIL)群体为材料,采集了该RIL群体2020—2023年在山东烟台、威海、东营和青岛4个环境下表型数据。结果表明,籽仁破损压力在RIL群体中均表现为连续分布和超亲遗传,广义遗传率为0.88。利用前期构建的高密度遗传图谱,共定位到8个与籽仁破损压力相关加性QTL,表型贡献率范围为6.04%~28.30%,其中2个主效位点qKCF7qKCF16.1可在不同环境下表达,其增效等位基因均来自花育36号。共定位到12对相关上位性QTL,共涉及24SNP标记区间,表型贡献率范围为1.55%~4.01%。本研究结果为后续花生适宜机械脱壳相关性状遗传改良提供了重要靶点及材料支持。

关键词: 花生, 机械脱壳, 籽仁破损压力, 数量性状位点, 定位

Abstract:

To further identify agronomic traits influencing mechanical shelling quality in peanut and explore their genetic basis, this study evaluated 63 advanced-generation lines and focused on three pod- or kernel-related traits: shelling percentage, pod crushing force, and kernel crushing force. Correlation analysis revealed that only kernel crushing force was significantly associated with the damaged kernel rate. Two lines (D9 and E10) with low damaged kernel rates (< 2.50%) were identified. Additionally, a recombinant inbred line (RIL) population of 181 individuals derived from a cross between cultivars Huayu36 and 6-13 was used for QTL mapping of the kernel crushing force trait. Phenotypic data were collected from 2020 to 2023 across four locations: Yantai, Weihai, Dongying, and Qingdao. The trait exhibited continuous variation and transgressive segregation in the RIL population, with a broad-sense heritability of 0.88. Using a previously published high-density genetic map, eight additive QTLs associated with kernel crushing force were identified, explaining 6.04% to 28.30% of the phenotypic variation. Among them, two major QTLs, qKCF7 and qKCF16.1, were stably expressed across multiple environments, with favorable alleles derived from Huayu36. In addition, 12 pairs of epistatic QTLs involving 24 SNP intervals were detected, explaining 1.55% to 4.01% of the phenotypic variation. These findings provide valuable genetic targets and germplasm resources for the future genetic improvement of traits related to mechanical shelling quality in peanut.

Key words: peanut, mechanical shelling, kernel crushing force, quantitative trait locus, mapping

[1] FAOSTAT. Statistics Database. Rome Available at: http://www.fao.org/statistics/databases/en/.

[2] 禹山林. 中国花生品种及其系谱. 上海: 上海科学技术出版社, 2008.

Yu S L. Peanut Varieties and Their Pedigrees in China. Shanghai: Shanghai Scientific & Technical Publishers, 2008 (in Chinese).

[3] 陈志德, 沈一, 刘永惠, 等. 不同花生品种机械脱壳特性研究. 江苏农业科学, 2023, 51(12): 91–95.

Chen Z D, Shen Y, Liu Y H, et al. Study on mechanical hulling characteristics of different peanut varieties. Jiangsu Agric Sci, 2023, 51(12): 91–95 (in Chinese).

[4] 丁彬, 谢吉先, 冯梦诗, 等. 不同花生荚果类型对机械剥壳效果的影响. 江苏农业科学, 2022, 50(5): 180–184.

Ding B, Xie J X, Feng M S, et al. Effect of different pod types on mechanical husking of peanut. Jiangsu Agric Sci, 2022, 50(5): 180–184 (in Chinese).

[5] Chang A S, Sreedharan A, Schneider K R. Peanut and peanut products: a food safety perspective. Food Control, 2013, 32: 296–303.

[6] 姜慧芳, 任小平, 王圣玉, 等. 花生黄曲霉侵染抗性持久性及种皮完整性对产毒的影响. 作物学报, 2006, 32: 851–855.

Jiang H F, Ren X P, Wang S Y, et al. Durability of resistance to Aspergillus flavus infection and effect of intact testa without injury on aflatoxin production in peanut. Acta Agron Sin, 2006, 32: 851–855 (in Chinese with English abstract).

[7] 王移收. 我国花生产品加工业现状、问题及发展趋势. 中国油料作物学报, 2006, 28: 498–502.

Wang Y S. Present situation, problem and developing trend of peanut food industry in China. Chin J Oil Crop Sci, 2006, 28: 498–502 (in Chinese).

[8] 陆荣, 高连兴, 刘志侠, 等. 中国花生脱壳机技术发展现状与展望. 沈阳农业大学学报, 2020, 51: 124–133.

Lu R, Gao L X, Liu Z X, et al. Development and prospect of technology on peanut sheller of China. J Shenyang Agric Univ, 2020, 51: 124–133 (in Chinese with English abstract).

[9] 郭陞垚, 陈剑洪, 陈永水, 等. 不同剥壳方式、含水率对春花生种子发芽和出苗的影响. 福建农业科技, 2015, 46(5): 1–3.

Guo S Y, Chen J H, Chen Y S, et al. Effects of different hesking ways on seed germination and seedling emergence of spring peanut with different moisture content. Fujian Agric Sci Technol, 2015, 46(5): 1–3 (in Chinese with English abstract).

[10] 王通, 禹山林, 谢宏峰, 等. 花生种皮变化对种子抗破损力的影响. 花生学报, 2020, 49(4): 69–72.

Wang T, Yu S L, Xie H F, et al. Influence of peanut testa variation on resistance of seed to breakage. J Peanut Sci, 2020, 49(4): 69–72 (in Chinese with English abstract).

[11] 王京, 高连兴, 刘志侠, 等. 花生荚果力学特性研究. 农机化研究, 2017, 39(1): 182–186.

Wang J, Gao L X, Liu Z X, et al. Experimental study on peanut pods mechanical property. J Agric Mech Res, 2017, 39(1): 182–186 (in Chinese with English abstract).

[12] 王京, 高连兴, 刘志侠, 等. 典型品种花生米静压力学特性及有限元分析. 沈阳农业大学学报, 2016, 47: 307–313.

Wang J, Gao L X, Liu Z X, et al. Static mechanical property and finite element analysis of typical of peanut varieties. J Shenyang Agric Univ, 2016, 47: 307–313 (in Chinese with English abstract).

[13] 蔡高委, 丛锦玲, 齐贝贝. 花生种子三轴方向起始破碎力. 江苏农业学报, 2019, 35: 716–721.

Cai G W, Cong J L, Qi B B. Experimental study on initial crushing force of peanut seeds in triaxial direction. Jiangsu J Agric Sci, 2019, 35: 716–721 (in Chinese with English abstract).

[14] 许静, 潘丽娟, 陈娜, . 不同花生荚果力学特性研究及优异品系筛选. 中国油料作物学报. 2021, 43: 803–815.

Xu J, Pan L J, Chen N, et al. Pods mechanical property of different peanuts and identification of elite varieties (lines). Chin J Oil Crop Sci, 2021, 43: 803–815 (in Chinese with English abstract).  

[15] Chen Y N, Ren X P, Zheng Y L, et al. Genetic mapping of yield traits using RIL population derived from Fuchuan Dahuasheng and ICG6375 of peanut (Arachis hypogaea L.). Mol Breed, 2017, 37: 17.

[16] Wang Z H, Huai D X, Zhang Z H, et al. Development of a high-density genetic map based on specific length amplified fragment sequencing and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut. Front Plant Sci, 2018, 9: 827.

[17] Zhang S Z, Hu X H, Wang F F, et al. A stable and major QTL region on chromosome 2 conditions pod shape in cultivated peanut (Arachis hyopgaea L.). J Integr Agric, 2023, 22: 2323–2334.

[18] Zhang S Z, Hu X H, Miao H R, et al. QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut (Arachis hypogaea L.). BMC Plant Biol, 2019, 19: 537.

[19] 刘志侠, 吴国振, 于永强, 等. 花生荚果生物力学特性研究. 沈阳农业大学学报, 2023, 54: 732–740.

Liu Z X, Wu G Z, Yu Y Q, et al. Study on biomechanical characteristics of peanut pod. J Shenyang Agric Univ, 2023, 54: 732–740 (in Chinese with English abstract).

[20] Meng L, Li H H, Zhang L Y, et al. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269–283.

[21] Yang J, Guo Z H, Luo L X, et al. Identification of QTL and candidate genes involved in early seedling growth in rice via high-density genetic mapping and RNA-seq. Crop J, 2021, 9: 360–371.

[22] Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77–78.

[23] 迟晓元, 毕竞男, 赵健鑫, 等. 花生荚果力学特性评鉴及早熟种质筛选. 作物学报, 2025, 51: 943–957.

Chi X Y, Bi J N, Zhao J X, et al. Evaluation of mechanical properties of peanut pods and screening of early maturing germplasm. Acta Agron Sin, 2025, 51: 943–957 (in Chinese with English abstract).

[24] Israel G B, Kunta S, Mlelwa W, et al. Genetic characterization and mapping of the shell-strength trait in peanut. BMC Plant Biol, 2024, 24: 1047.

[25] Balakrishnan D, Surapaneni M, Yadavalli V R, et al. Detecting CSSLs and yield QTLs with additive, epistatic and QTL × environment interaction effects from Oryza sativa × O. nivara IRGC81832 cross. Sci Rep, 2020, 10: 7766.

[26] Li Z K, Luo L J, Mei H W, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice: I. Biomass and grain yield. Genetics, 2001, 158: 1737–1753.

[27] Carlborg Ö, Haley C S. Epistasis: too often neglected in complex trait studies? Nat Rev Genet, 2004, 5: 618–625. 

[1] 张晴, 杨昱, 郭茜, 岳霈尧, 殷丛丛, 牛景萍, 赵晋忠, 杜维俊, 岳爱琴. 大豆GmARA6a的克隆及响应盐胁迫的功能分析[J]. 作物学报, 2026, 52(2): 480-493.
[2] 余开航, 周洪斌, 罗亮扎, 王玫郦, 姜瑞梅, 董陈文华, 李仕金, 毛孝强. 大麦亮氨酸富集重复型类受体激酶基因HvLRR-RLK-510的克隆和表达分析[J]. 作物学报, 2026, 52(2): 421-432.
[3] 金欣欣, 宋亚辉, 苏俏, 杨永庆, 王瑾. 高产高油高油酸花生品种的生长发育及干物质生产特征[J]. 作物学报, 2026, 52(1): 191-201.
[4] 迟晓元, 刘庆, 张君, 赵旭红, 李美, 于天一, 潘丽娟, 许静, 姜骁, 殷祥贞, 马俊卿, 陈娜. 不同花生品种(系)耐盐碱性田间鉴定及各性状指标相关性研究[J]. 作物学报, 2026, 52(1): 85-98.
[5] 孙辰硕, 张月, 田泽锴, 晏立英, 康彦平, 陈玉宁, 王欣, 淮东欣, 王前前, 姜慧芳, 罗怀勇, 黄莉, 廖伯寿, 王志慧, 雷永. 花生种质果柄强度的遗传分化与主要影响因子分析[J]. 作物学报, 2026, 52(1): 118-130.
[6] 王菲菲, 张胜忠, 杨贵华, 苗华荣, 胡晓辉, 张则林, 刘莎莎, 乔利仙, 单世华, 陈静. 331份花生种质苗期耐盐性综合评价和强耐盐种质鉴选[J]. 作物学报, 2026, 52(1): 279-294.
[7] 杨海洋, 吴林宣, 李博纹, 石翰峰, 袁禧龙, 刘金朝, 蔡海荣, 陈诗怡, 郭涛, 王慧. 基于QTL定位发现的OsWRI3调控水稻种子的落粒性[J]. 作物学报, 2025, 51(7): 1712-1724.
[8] 万书波, 张佳蕾, 高华鑫, 王才斌. 中国花生高产栽培研究进展与展望[J]. 作物学报, 2025, 51(7): 1703-1711.
[9] 胡蒙, 沙丹, 张晟瑞, 谷勇哲, 张世碧, 李静, 孙君明, 邱丽娟, 李斌. 大豆分枝数QTL定位及候选基因筛选[J]. 作物学报, 2025, 51(7): 1747-1756.
[10] 邵顺伟, 陈卓, 兰振东, 蔡兴奎, 邹华芬, 李晨曦, 唐景华, 朱熙, 张彧, 董建科, 金辉, 宋波涛. 基于BSA-seq技术的块茎芽眼深度QTL定位分析[J]. 作物学报, 2025, 51(7): 1725-1735.
[11] 郭腾达, 崔梦杰, 陈琳杰, 韩锁义, 郭敬坤, 吴晨迪, 付留洋, 黄冰艳, 董文召, 张新友. 花生磷脂酰肌醇转运蛋白基因AhSFH的克隆及其响应黄曲霉菌侵染的表达特征分析[J]. 作物学报, 2025, 51(6): 1489-1500.
[12] 李世鹏, 陈才武, 张晶, 吕恬, 傅廷栋, 易斌. 基于改进U-Net++模型的油菜pol TCMS温敏两系育性等级鉴定及温度育性关系的量化研究[J]. 作物学报, 2025, 51(6): 1423-1434.
[13] 杨思杰, 杜启迪, 柴守玺, 熊宏春, 谢永盾, 赵林姝, 古佳玉, 郭会君, 刘录祥. 小麦小旗叶突变性状基因定位与遗传分析[J]. 作物学报, 2025, 51(6): 1548-1557.
[14] 袁鑫, 赵卓凡, 赵瑞清, 刘孝伟, 郑名敏, 刘育生, 董好胜, 邓丽娟, 曹墨菊, 黄强. 一份玉米小籽粒发育突变体mn-like1的遗传分析与分子鉴定[J]. 作物学报, 2025, 51(6): 1569-1581.
[15] 李文佳, 廖泳俊, 黄璐, 鲁清, 李少雄, 陈小平, 金晶炜, 王润风. 花生开花时间的全基因组关联分析及候选基因筛选[J]. 作物学报, 2025, 51(5): 1400-1408.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .