欢迎访问作物学报,今天是

作物学报

• •    

花生种质果柄强度的遗传分化与主要影响因子分析

孙辰硕1,张月1,田泽锴1,晏立英1,康彦平1,陈玉宁1,王欣1,淮东欣1,王前前1,姜慧芳1,罗怀勇1,黄莉1,廖伯寿1,王志慧1,2,*,雷永1,*   

  1. 1 中国农业科学院油料作物研究所, 湖北武汉430062; 2 华中农业大学植物科学技术学院, 湖北武汉430070
  • 收稿日期:2025-05-27 修回日期:2025-10-30 接受日期:2025-10-30 网络出版日期:2025-11-04
  • 通讯作者: 王志慧, E-mail: wangzhihui@caas.cn; 雷永, E-mail: leiyong@caas.cn
  • 基金资助:
    本研究由国家重点研发计划项目(2023YFD1200201), 湖北省支持种业高质量发展资金项目(HBZY2023B003), 湖北省农业科技创新中心创新团队项目(2024620000001031), 财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-13)和中国农业科学院科技创新工程项目(CAAS-ASTIP-2021-OCRI)资助。

Genetic differentiation of peg strength and analysis of major influencing factors in peanut germplasm

Sun Chen-Shuo1, Zhang Yue1, Tian Ze-Kai1, Yan Li-Ying1, Kang Yan-Ping1, Chen Yu-Ning1, Wang Xin1, Huai Dong-Xin1, Wang Qian-Qian1, Jiang Hui-Fang1, Luo Huai-Yong1, Huang Li1, Liao Bo-Shou1, Wang Zhi-Hui1,2,*,Lei Yong1,*   

  1. 1 Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, Hubei, China; 2 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2025-05-27 Revised:2025-10-30 Accepted:2025-10-30 Published online:2025-11-04
  • Contact: 王志慧, E-mail: wangzhihui@caas.cn; 雷永, E-mail: leiyong@caas.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2023YFD1200201), the Project of the Development for high-quality Seed Industry of Hubei Province (HBZY2023B003), the Innovation Team of Hubei Agricultural Science and Technology Innovation Center Project (2024620000001031), the China Agriculture Research System of MOF and MARA (CARS-13), and the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2021-OCRI).

摘要: 花生(Arachis hypogaea L.)国重要的油料作物,具有地上开花地下结果的独特生物学特性这一特性导致收获过程中,尤其在机械化收获条件下,出现较落果率,严重影响了收获效率并造成产量损失。品种间果柄强度的差异是决定挖掘作业落果率差异的主要因素,系统揭示花生果柄强度的变异规律阐明其主要影响因子,将为培育抗落果品种提供优异材料和技术支撑。为此,本研究调查了241份代表性花生种质材料的果柄强度及其相关的果柄粗度、果柄木质素和纤维素含量。结果表明,-柄和果-柄节点拉断力在不同材料间的变异系数超30%存在丰富的表型变异,成功筛选了11份优异种质资源;不同变种间的果柄强度差异显著,珍珠豆型和多粒型的果柄强度显著高于其他类型,表明遗传因素对花生果柄强度产生了不同的影响。基于果柄强度相关性状开展了相关性分析、主成分分析、多元线性回归分析等,结果显示果柄强度与果柄纤维素含量高度相关;选取了4个极端表型的花生材料,测定了花生果柄4个发育时期的纤维素和木质素含量,研究发现了果柄强度大的材料在不同发育时期的纤维素含量均显著高于果柄强度小的材料,再次验证了纤维素含量是影响果柄强度的重要因素本研究揭示了花生果柄强度在种质资源中的变异情况,阐明了果柄纤维素含量对果柄强度的重要影响,为后续开展花生果柄强度遗传改良和培育适宜机械化收获的抗落果花生品种奠定了基础。

关键词: 花生, 茎-柄节点拉断力, 果-柄节点拉断力, 遗传分化, 影响因子

Abstract:

Peanut (Arachis hypogaea L.) is an important oil crop in China. Due to its unique biological characteristic of “aerial flowering and subterranean fruiting”, it faces a high pod drop rate during harvesting—especially under mechanized conditions—which significantly reduces production efficiency and leads to yield losses. Variations in peg strength among peanut germplasm are a key determinant of pod drop rate during digging operations. Systematically uncovering the variation patterns in peg strength and identifying its primary influencing factors will provide valuable germplasm and technical support for breeding pod drop-resistant varieties. In this study, peg strength and related traits—including peg thickness, lignin content, and cellulose content—were evaluated across 241 representative peanut germplasm accessions. The results showed that the coefficients of variation for the breaking force at both the stem–peg and pod–peg junctions exceeded 30%, indicating substantial phenotypic diversity. Eleven elite germplasm accessions with superior peg strength were identified. Significant differences in peg strength were observed among botanical types, with Valencia and Multigrain types exhibiting significantly higher values than others, suggesting that genetic background has a notable influence on peg strength. Further correlation analysis, principal component analysis, and multiple linear regression revealed a strong positive correlation between peg strength and cellulose content. To validate this, four accessions with extreme phenotypes were selected, and cellulose and lignin contents were measured at four developmental stages of the peg. Accessions with high peg strength consistently exhibited significantly higher cellulose content across all stages compared to those with low peg strength, confirming that cellulose content is a key factor influencing peg strength. This study clarifies the phenotypic variation in peg strength among peanut germplasm and highlights the critical role of cellulose content, providing a theoretical basis for the genetic improvement of peg strength and the development of peanut varieties suitable for mechanized harvesting.

Key words: peanut, breaking force at stem–peg, breaking force at pod–peg, genetic differentiation, influencing factor

[1] 许静, 潘丽娟, 陈娜, . 不同花生荚果力学特性研究及优异品系筛选. 中国油料作物学报, 2021, 43: 803–815.
Xu J, Pan L J, Chen N, et al. Pods mechanical property of different peanuts and identification of elite varieties (lines). Chin J Oil Crop Sci, 2021, 43: 803–815 (in Chinese with English abstract).

[2] 宁世祥. 我国典型产区花生收获机械化及影响因素分析. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2018.
Ning S X. Mechanization of Peanut Harvesting in Typical Producing Areas of China and Analysis of Its Influencing Factors. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2018 (in Chinese with English abstract).

[3] 尚书旗, 王方艳, 刘曙光, . 花生收获机械的研究现状与发展趋势. 农业工程学报, 2004, 20(1): 20–25.
Shang S Q, Wang F Y, Liu S G, et al. Research situation and development trend on peanut harvesting machinery. Trans CSAE, 2004, 20(1): 20–25 (in Chinese with English abstract).

[4] 迟晓元, 许静, 潘丽娟, . 不同花生种质荚果力学特性研究. 花生学报, 2022, 51(4): 18–28.
Chi X Y, Xu J, Pan L J, et al. Study on pod mechanical properties of different peanut germplasms. J Peanut Sci, 2022, 51(4): 18–28 (in Chinese with English abstract).

[5] 王传堂, 王志伟, 王秀贞, . 不同花生基因型机械化收获相关特性的研究. 花生学报, 2019, 48(1): 52–57.
Wang C T, Wang Z W, Wang X Z, et al. Evaluation of different peanut genotypes for mechanized harvest properties. J Peanut Sci, 2019, 48(1): 52–57 (in Chinese with English abstract).

[6] 沈一, 刘永惠, 陈志德. 不同花生品种()果柄拉力强度测试和荚果主要性状调查. 江苏农业科学, 2012, 40(10): 82–83.
Shen Y, Liu Y H, Chen Z D. Tensile strength test of different peanut varieties (lines) and investigation of main pod characters. Jiangsu Agric Sci, 2012, 40(10): 82–83 (in Chinese).

[7] 郭丹丹. 花生荚果落荚性和荚果大小相关性状的全基因组关联分析. 华中农业大学硕士学位论文, 湖北武汉, 2022.

Guo D D. Genome-wide Association Analysis of the Traits Related to Pod Drop and Pod Size in Peanut. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2022 (in Chinese with English abstract).

[8] 隋荣娟, 潘滢月, 孙居彦. 不同成熟度花生果柄节点力学性能研究. 山东农业工程学院学报, 2019, 36(3): 25–28.
Sui R J, Pan Y Y, Sun J Y. Research on mechanical properties of peg nodes with different maturity of peanuts. J Shandong Agric Eng Univ, 2019, 36(3): 25–28 (in Chinese with English abstract).

[9] 刘龙, 刘道奇, 孙千涛, . 花生收获摘果力试验及分析. 农机化研究, 2022, 44(6): 139–144.
Liu L, Liu D Q, Sun Q T, et al. Experiment and analysis of the harvest and picking ability of peanut. J Agric Mech Res, 2022, 44(6): 139–144 (in Chinese with English abstract).

[10] 张甜, 孙雅文, 王铭伦, . 不同落果特性花生品种茎枝生长与结构的研究. 花生学报, 2018, 47(2): 59–62.
Zhang T, Sun Y W, Wang M L, et al. The research on structure growth of stems and branches of peanuts with different pod-dropping characteristics. J Peanut Sci, 2018, 47(2): 59–62 (in Chinese with English abstract).

[11] 张晓, 陈玲, 孙雅文, . 不同落果特性花生品种荚果性状及果壳强度的研究. 花生学报, 2019, 48(3): 60–64.
Zhang X, Chen L, Sun Y W, et al. The research on pod traits and shell strength of peanut varieties with different fruit drop characteristics. J Peanut Sci, 2019, 48(3): 60–64 (in Chinese with English abstract).

[12] 樊海潮, 顾万荣, 杨德光, . 化控剂对东北春玉米茎秆理化特性及抗倒伏的影响. 作物学报, 2018, 44: 909–919.
Fan H C, Gu W R, Yang D G, et al. Effect of chemical regulators on physical and chemical properties and lodging resistance of spring maize stem in Northeast China. Acta Agron Sin, 2018, 44: 909–919 (in Chinese with English abstract).

[13] 胡昊. 小麦茎秆特性与抗倒伏关系及其调控研究. 河南农业大学硕士学位论文, 河南郑州, 2013.
Hu H. Study on the Relationship between Wheat Stalk Characteristics and Lodging Resistance and Its Regulation. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2013 (in Chinese with English abstract).

[14] 梁煜莹, 张加羽, 姜骁, . 花生品质与气候环境的关系研究. 植物遗传资源学报, 2024, 25: 227–244.
Liang Y Y, Zhang J Y, Jiang X, et al. Study on the relationship between peanut quality and climatic environments. J Plant Genet Resour, 2024, 25: 227–244 (in Chinese with English abstract).

[15] 张玉松, 何柳, 张云云, 等. 不同生态区气象因子对花生产量相关性状的影响. 中国油料作物学报, 2024, 46: 676–686.

Zhang Y S, He L, Zhang Y Y, et al. Effects of meteorological factors in different ecoregions on yield-related traits of peanut production. Chin J Oil Crop Sci, 2024, 46: 676686 (in Chinese with English abstract).

[16] 姜骁, 许静, 潘丽娟, 等. 花生产量相关性状与气象因子多环境相关性分析. 作物学报, 2023, 49: 3110–3121.

Jiang X, Xu J, Pan L J, et al. Peanut yield-related traits and meteorological factors correlation analysis in multiple environments. Acta Agron Sin, 2023, 49: 31103121 (in Chinese with English abstract).  

[17] 徐日荣, 陈湘瑜, 陈昊, . 福建主栽花生品种果柄节点强度分析. 中国农机化学报, 2022, 43(5): 22–28.
Xu R R, Chen X Y, Chen H, et al. Analysis of peg strength of main peanut varieties in Fujian province. J Chin Agric Mech, 2022, 43(5): 22–28 (in Chinese with English abstract).

[18] 王鹏, 樊秀彩, 张颖, . 600份葡萄种质资源果柄耐拉力鉴定评价. 植物遗传资源学报, 2019, 20: 1197–1212.
Wang P, Fan X C, Zhang Y, et al. Identification and evaluation of pulling force of fruit stalk for 600 grape germplasm resources. J Plant Genet Resour, 2019, 20: 1197–1212 (in Chinese with English abstract).

[19] 罗茂春, 田翠婷, 李晓娟, . 水稻茎秆形态结构特征和化学成分与抗倒伏关系综述. 西北植物学报, 2007, 27: 2346–2353.
Luo M C, Tian C T, Li X J, et al. Relationship between morpho-anatomical traits together with chemical components and lodging resistance of stem in rice (Oryza sativa L.). Acta Bot Boreali-Occident Sin, 2007, 27: 2346–2353 (in Chinese with English abstract).

[20] 夏星, 汤寓涵, 陶俊, . 观赏植物茎秆强度形成及其调控. 植物生理学报, 2018, 54: 347–354.
Xia X, Tang Y H, Tao J, et al. Formation and regulation of ornamental plant stem strength. Plant Physiol J, 2018, 54: 347–354 (in Chinese with English abstract).

[21] 张水金, 郑轶, 朱永生, . 水稻脆性突变体研究进展. 福建农业学报, 2011, 26: 895–898.
Zhang S J, Zheng Y, Zhu Y S, et al. Advance in research on brittleness mutant of rice. Fujian J Agric Sci, 2011, 26: 895–898 (in Chinese with English abstract).

[22] 屈丝雨, 任甜, 樊丁宇, 等. 灰枣和冬枣果实质地差异的解剖学观察及相关酶活性研究. 果树学报, 2024, 41: 1811–1820.

Qu S Y, Ren T, Fan D Y, et al. Anatomical observation on the differences in the fruit texture between Huizao and Dongzao jujube and related enzyme activities. J Fruit Sci, 2024, 41: 18111820.

[23] Maluin F N, Hussein M Z, Idris A S. An overview of the oil palm industry: challenges and some emerging opportunities for nanotechnology development. Agronomy, 2020, 10: 356.

[24] Guan L Y, Huang Q Z, Wang X J, et al. Rapid prediction of mechanical properties based on the chemical components of windmill palm fiber. Materials, 2022, 15: 4989.

[25] 卢明, 洪珊, 剧虹伶, . 施钙对台农17菠萝裂柄的生理影响及效果. 植物生理学报, 2018, 54: 565–573.
Lu M, Hong S, Ju H L, et al. Influence of calcium on peduncle cracking of pineapple (Ananas comosus cv. ‘Tainon 17’) and its physiological mechanism. Plant Physiol J, 2018, 54: 565–573 (in Chinese with English abstract).

[26] 陈晓光, 史春余, 尹燕枰, . 小麦茎秆木质素代谢及其与抗倒性的关系. 作物学报, 2011, 37: 1616–1622.
Chen X G, Shi C Y, Yin Y P, et al. Relationship between lignin metabolism and lodging resistance in wheat. Acta Agron Sin, 2011, 37: 1616–1622 (in Chinese with English abstract).

[1] 万书波, 张佳蕾, 高华鑫, 王才斌. 中国花生高产栽培研究进展与展望[J]. 作物学报, 2025, 51(7): 1703-1711.
[2] 郭腾达, 崔梦杰, 陈琳杰, 韩锁义, 郭敬坤, 吴晨迪, 付留洋, 黄冰艳, 董文召, 张新友. 花生磷脂酰肌醇转运蛋白基因AhSFH的克隆及其响应黄曲霉菌侵染的表达特征分析[J]. 作物学报, 2025, 51(6): 1489-1500.
[3] 李文佳, 廖泳俊, 黄璐, 鲁清, 李少雄, 陈小平, 金晶炜, 王润风. 花生开花时间的全基因组关联分析及候选基因筛选[J]. 作物学报, 2025, 51(5): 1400-1408.
[4] 迟晓元, 毕竞男, 赵健鑫, 陈娜, 潘丽娟, 姜骁, 殷祥贞, 赵旭红, 马俊卿, 许静. 花生荚果力学特性评鉴及早熟种质筛选[J]. 作物学报, 2025, 51(4): 943-957.
[5] 林伟津, 郭泽佳, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 陈小平, 洪彦彬, 李少雄, 鲁清. 花生荚果产量相关性状QTL定位与候选基因分析[J]. 作物学报, 2025, 51(4): 969-981.
[6] 金欣欣, 宋亚辉, 苏俏, 杨永庆, 李玉荣, 王瑾. 冀花系列高油酸花生抗旱性鉴定与综合评价[J]. 作物学报, 2025, 51(3): 797-811.
[7] 晋高锐, 吴小丽, 邓丽, 陈玉宁, 喻博伦, 郭建斌, 丁膺宾, 刘念, 罗怀勇, 陈伟刚, 黄莉, 周小静, 淮东欣, 谭家壮, 姜慧芳, 任丽, 雷永, 廖伯寿. 兼抗黄曲霉侵染和产毒高油酸花生新种质的创制与评价[J]. 作物学报, 2025, 51(3): 687-895.
[8] 胡朋举, 郭颂, 宋亚辉, 金欣欣, 苏俏, 杨永庆, 王瑾. 多环境下花生含油量遗传及QTL定位分析[J]. 作物学报, 2025, 51(2): 324-333.
[9] 赵斐斐, 李少雄, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 洪彦彬, 陈小平, 鲁清, 曹玉曼. 花生主茎节间和侧枝节间长度的关联作图及候选基因分析[J]. 作物学报, 2025, 51(2): 548-556.
[10] 王润风, 李文佳, 廖泳俊, 鲁清, 刘浩, 李海芬, 李少雄, 梁炫强, 洪彦彬, 陈小平. 花生核心种质资源荚果成熟度评鉴及早熟种质筛选[J]. 作物学报, 2025, 51(2): 395-404.
[11] 郭建斌, 原小燕, 符明联, 陈伟刚, 罗怀勇, 刘念, 黄莉, 周小静, 姜慧芳, 廖伯寿, 雷永. 不同海拔生态区花生含油量和蔗糖含量的差异及蔗糖含量关联分析[J]. 作物学报, 2025, 51(11): 3005-3012.
[12] 崔梦杰, 王督, 齐飞艳, 孙子淇, 郭敬坤, 刘华, 黄冰艳, 董文召, 代小冬, 韩锁义, 张新友. 抗黄曲霉产毒花生种质的筛选与评价[J]. 作物学报, 2025, 51(11): 2996-3004.
[13] 姜骁, 赵健鑫, 毕竞男, 许静, 殷祥贞, 赵旭红, 潘丽娟, 陈娜, 马俊卿, 韩鹏, 杨珍, 迟晓元. 中国北方主产区主要地理和气候因子对花生农艺性状和品质的影响[J]. 作物学报, 2025, 51(10): 2805-2820.
[14] 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166.
[15] 朱荣昱, 赵蒙杰, 姚云凤, 李艳红, 李向东, 刘兆新. 秸秆还田方式与播种深度对夏直播花生土壤物理性状与出苗特性的影响[J]. 作物学报, 2024, 50(8): 2106-2121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!