欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (11): 3005-3012.doi: 10.3724/SP.J.1006.2025.55021

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

不同海拔生态区花生含油量和蔗糖含量的差异及蔗糖含量关联分析

郭建斌1,原小燕2,符明联2,陈伟刚1,罗怀勇1,刘念1,黄莉1,周小静1,姜慧芳1,廖伯寿1,雷永1,*   

  1. 1 中国农业科学院油料作物研究所 / 农业农村部油料作物生物学与遗传育种重点实验室, 湖北武汉 430062; 2 云南省农业科学院经济作物研究所, 云南昆明 650205
  • 收稿日期:2025-03-18 修回日期:2025-07-09 接受日期:2025-07-09 出版日期:2025-11-12 网络出版日期:2025-07-14
  • 基金资助:
    本研究由国家重点研发计划项目(2023YFD1200201), 农作物种质资源保护项目(19210163), 湖北省支持种业高质量发展资金项目(HBZY2023B00305)和财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-13-种质资源评价)资助。

Differences in oil and sucrose content of peanuts in ecological regions at different altitudes and association study of sucrose content

GUO Jian-Bin1,YUAN Xiao-Yan2,FU Ming-Lian2,CHEN Wei-Gang1,LUO Huai-Yong1,LIU Nian1,HUANG Li1,ZHOU Xiao-Jing1,JIANG Hui-Fang1,LIAO Bo-Shou1,LEI Yong1,*   

  1. 1 Oil Crops Research Institute, China Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China; 2 Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China
  • Received:2025-03-18 Revised:2025-07-09 Accepted:2025-07-09 Published:2025-11-12 Published online:2025-07-14
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2023YFD1200201), the National Program for Crop Germplasm Protection of China (19210163), the Project of the Development for High-quality Seed Industry of Hubei Province (HBZY2023B00305), and the China Agriculture Research System of MOF and MARA (CARS-13-Germplasm Resource Evaluation).

摘要:

含油量、蔗糖含量分别是油用型、食用型花生最为关键的品质性状。高海拔冷凉地区是扩大花生种植面积,提升花生产能的重要途径。为探究不同海拔生态区对花生含油量和蔗糖含量的影响,本研究在低海拔地区的武汉和高海拔地区的昆明2环境下连续2年分别种植404份花生资源材料,并对含油量和蔗糖含量进行测定分析。结果表明高海拔地区种植花生含油量降低蔗糖含量升高,且蔗糖含量升高幅度(205.26%)远大于含油量降低幅度(2.37%)。通过比较分析,在低海拔武汉种植条件下,所有材料的含糖量均低于5(高糖标准)3份材料在高、低海拔条件下表现为高油或接近高油(含油量55%),可作为高海拔地区油用型品种培育的优良亲本不同类型和不同籽粒大小材料的含油量和蔗糖含量受不同海拔生态区的影响不同,大粒材料的含油量、蔗糖含量受海拔生态区的影响大于小粒材料。此外,对292份材料的蔗糖含量进行了关联分析,共检测到4个与蔗糖含量极显著关联的SSR标记,解释5.85%~7.68%的表型变异,分别位于A09、B01B05B09染色体上。与前期含油量关联分析结果进行比较,发现与含油量显著关联的标记pPGPseq8D9也位于A09染色体上,但位置不同,分别位于A09染色体的10.45 Mb119.60 Mb。海拔影响含油量、蔗糖含量等主要品质指标,因此生产上要重视海拔生态区对花生含油量和蔗糖含量的影响。高海拔地区是发展食用型花生的优势区域,种植的花生蔗糖含量大幅度提高,但高海拔地区发展油用型花生应重点选择稳定高油的品种以减少海拔生态区含油量的影响。

关键词: 花生, 海拔, 含油量, 蔗糖含量

Abstract:

Oil content and sucrose content are the most important quality traits for oil-use and edible peanuts, respectively. Cultivating peanuts in high-altitude, cooler regions is an important strategy to expand planting areas and enhance production capacity. To investigate the effects of altitude on peanut oil and sucrose contents, a total of 404 peanut germplasms were planted in Wuhan and Kunming over two consecutive years, and their oil and sucrose contents were measured. The results showed that peanuts grown in high-altitude regions had decreased oil content and increased sucrose content, with the increase in sucrose being much greater than the reduction in oil. Comparative analysis revealed that no accessions with high sucrose content (>5%) were found in the Wuhan environment, while only three accessions showed stable and high oil content across both altitudes, indicating their potential as elite parents for breeding oil-use varieties adapted to high-altitude regions. The effects of altitude on oil and sucrose contents varied among accessions with different botanical types and seed sizes, with large-seeded accessions being more sensitive to altitude-related ecological factors than small-seeded ones. Additionally, an association study for sucrose content identified four significant SSR markers, explaining 5.85%–7.68% of the phenotypic variation, located on chromosomes B01, B05, A09, and B09. Notably, when compared with our previous oil content association study, the marker pPGPseq8D9, significantly associated with oil content, was also located on chromosome A09, though at a different position 10.45 Mb for sucrose and 119.60 Mb for oil. These findings highlight that altitude significantly affects key quality traits such as oil and sucrose content. Therefore, the influence of high-altitude ecological conditions on peanut quality should be carefully considered in production. The substantial increase in sucrose content makes high-altitude regions favorable for developing edible peanut varieties, whereas the development of oil-use varieties in such regions should prioritize selecting genotypes with stable and high oil content to mitigate the negative impact of altitude.

Key words: peanut, altitude, oil content, sucrose content, association study

[1] 廖伯寿. 深化花生抗性聚合改良支撑产业绿色高效发展. 民主与科学, 2024, (5): 1012.
Liao B S. Deepen the green and efficient development of peanut resistance polymerization improvement support industry. Democracy & Science, 2024, (5): 10–12 (in Chinese).

[2] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42: 161166. 
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42: 161166 (in Chinese with English abstract).

[3] 汤松. 我国花生发展概况、存在的问题及措施建议. 花生学报, 2003, 32(增刊1): 1623.
Tang S. General situation, existing problems and suggestions of peanut development in China. J Peanut Sci, 2003, 32(S1): 16–23 (in Chinese). 

[4] 郭洪海, 杨萍, 杨丽萍, 李新华, 万书波, 符明联. 云贵高原花生生产与品质特征. 中国农学通报, 2011, 27(3): 221225.
Guo H H, Yang P, Yang L P, Li X H, Wan S B, Fu M L. The characteristics of production and quality of peanut in Yungui Plateau. Chin Agric Sci Bull, 2011, 27(3): 221–225 (in Chinese with English abstract).

[5] 傅抱璞, 虞静明, 卢其尧.山地气候资源与开发利用. 南京: 南京大学出版社, 1996. pp 165179.
Fu B P, Yu J M, Lu Q Y. Mountain Climate Resources and Development and Utilization. Nanjing: Nanjing University Press, 1996. pp 165–179 (in Chinese).

[6] 潘红丽, 李迈和, 蔡小虎, 吴杰, 杜忠, 刘兴良. 海拔梯度上的植物生长与生理生态特性. 生态环境学报, 2009, 18: 722730.
Pan H L, Li M H, Cai X H, Wu J, Du Z, Liu X L. Responses of growth and ecophsiology of plants to altitude. Eco Environi Sci, 2009, 18: 722–730 (in Chinese with English abstract).

[7] 王玉娇. 海拔条件和施氮量对小麦产量及品质的影响. 新疆农业大学硕士学位论文, 乌鲁木齐, 2021.
Wang Y J. Effects of Altitude Conditions and Nitrogen Application Rate on Wheat Yield and Quality. MS Thesis of Xijiang Agricultural University, Urumqi, Xinjiang, China, 2021 (in Chinese with English abstract).

[8] Bertin P, Busocoro J P, Tilquin J P, Kinet J M, Bouharmont J. Field evaluation and selection of rice somaclonal variants at different altitudes. Plant Breed, 2010, 115: 183188.

[9] 陈学君, 曹广才, 贾银锁, 吴东兵, 陈婧, 于亚雄, 李唯, 李杰. 玉米生育期的海拔效应研究. 中国生态农业学报, 2009, 17: 527–532.
Chen X J, Cao G C, Jia Y S, Wu D B, Chen J, Yu Y X, Li W, Li J. Influence of elevation on growth duration of maize (Zea mays L.). Chin J Eco-Agric, 2009, 17: 527–532 (in Chinese with English abstract).

[10] 谭亚玲, 洪汝科, 陈金凤, 张忠林, 谭学林. 海拔高度对不同水稻品种生长的影响研究. 种子, 2009, 28(7): 2730.
Tan Y L, Hong R K, Chen J F, Zhang Z L, Tan X L. Effects of altitude on growth of different rice varieties. Seed, 2009, 28(7): 27–30 (in Chinese with English abstract).

[11] 张晓春, 石有明, 尹学伟, 周燕, 黄华磊, 高志宏, 钟巍然. 不同海拔高度间甘蓝型油菜产量和品质的差异. 西南农业学报, 2012, 25: 20002004.
Zhang X C, Shi Y M, Yin X W, Zhou Y, Huang H L, Gao Z H, Zhong W R. Study on yield and quality of rapeseed (Brassica napus L.) in different altitude. Southwest China J Agric Sci, 2012, 25: 2000–2004 (in Chinese with English abstract).

[12] 李春喜, 冯海生, 闫慧颖, 裴剑民, 李永仁. 不同海拔生态区甜高粱和玉米及甜高粱不同刈割次数的养分含量. 草地学报, 2016, 24: 425432.
Li C X, Feng H S, Yan H Y, Pei J M, Li Y R. Nutrient content of sweet sorghum and corns in different altitude regions and sweet sorghum in different clipping frequency. Acta Agrestia Sin, 2016, 24: 425–432 (in Chinese with English abstract).

[13] 刘淑云, 董树亭, 胡昌浩. 不同海拔高度对玉米品质性状影响的研究. 玉米科学, 2005, 13(2): 6871.
Liu S Y, Dong S T, Hu C H. The study of latitude and altitude affecting to maize quality. J Maize Sci, 2005, 13(2): 68-71 (in Chinese with English abstract).

[14] 李静, 袁继超, 蔡光泽. 海拔对水稻产量和品质的影响研究进展. 中国农学通报, 2013, 29(24): 14.
Li J, Yuan J C, Cai G Z. Advances in the research of elevation on rice yield and quality. Chin Agric Sci Bull, 2013, 29(24): 1–4 (in Chinese with English abstract).

[15] Liu N, Huang L, Chen W G, Wu B, Pandey M K, Luo H Y, Zhou X J, Guo J B, Chen H W, Huai D X, et al. Dissection of the genetic basis of oil content in Chinese peanut cultivars through association mapping. BMC Genet, 2020, 21: 60.

[16] Pattee H E, Isleib T G, Giesbrecht F G, McFeeters R F. Relationships of sweet, bitter, and roasted peanut sensory attributes with carbohydrate components in peanuts. J Agric Food Chem, 2000, 48: 757–763.

[17] 陈娜, 程果, 潘丽娟, 陈明娜, 张小燕, 王冕, 王通, 许静, 禹山林, 孙泓希, . 东北地区收获期低温对花生品质影响及耐低温品种选. 植物生理学报, 2020, 56: 24172427.
Chen N, Cheng G, Pan L J, Chen M N, Zhang X Y, Wang M, Wang T, Xu J, Yu S L, Sun H X, et al.  Effect of low temperature on peanut quality and screening of low temperature tolerant varieties in Northeast China. Plant Physiol J, 2020, 56: 2417–2427 (in Chinese with English abstract).

[18] 周倩, 梅乐, 刘亚萍. 海拔和收获期对小京生花生还原糖含量的影响. 浙江农业科学, 2020, 61(2): 266267.
Zhou Q, Mei L, Liu Y P. Effects of altitude and harvest period on reducing sugar content of Xiaojingsheng peanut. J Zhejiang Agric Sci, 2020, 61(2): 266–267 (in Chinese with English abstract).

[19] 郭建斌, 李威涛, 丁膺宾, 徐思亮, 淮东欣, 刘念, 陈伟刚, 黄莉, 罗怀勇, 周小静, . 花生籽仁不同发育时期不同部位主要营养成分变化. 中国油料作物学报, 2020, 42: 10511057.
Guo J B, Li W T, Ding Y B, Xu S L, Huai D X, Liu N, Chen W G, Huang L, Luo H Y, Zhou X J, et al. Variation of nutritional components in different developmental stages and different parts of seeds in peanut. Chin J Oil Crop Sci, 2020, 42: 1051–1057 (in Chinese with English abstract).

[20] Song Y Y, Rowland D L, Tillman B L, Wilson C H, Sarnoski P J, Zurweller B A. Impact of seed maturity on season-long physiological performance and offspring seed quality in peanut (Arachis hypogaea L.). Field Crop Res, 2022, 288: 108674.

[21] Guo J J, Qi F Y, Qin L, Zhang M N, Sun Z Q, Li H Y, Cui M J, Zhang M Y, Li C Y, Li X N, et al. Mapping of a QTL associated with sucrose content in peanut kernels using BSA-seq. Front Genet, 2023, 13: 1089389.

[22] Li W T, Huang L, Liu N, Chen Y N, Guo J B, Yu B L, Luo H Y, Zhou X J, Huai D X, Chen W G, et al. Identification of a stable major sucrose-related QTL and diagnostic marker for flavor improvement in peanut. Theor Appl Genet, 2023, 136: 78.

[23] Wang F F, Miao H R, Zhang S Z, Hu X H, Li C J, Chu Y, Chen C, Zhong W, Zhang T Y, Wang H, et al. Identification of a major QTL underlying sugar content in peanut kernels based on the RIL mapping population. Front Plant Sci, 2024, 15: 1423586.

[24] Huai D X, Zhi C Y, Wu J, Xue X M, Hu M L, Zhang J N, Liu N, Huang L, Yan L Y, Wang X, et al. Unveiling the molecular regulatory mechanisms underlying sucrose accumulation and oil reduction in peanut kernels through genetic mapping and transcriptome analysis. Plant Physiol Bioch, 2024, 208: 108448.

[1] 万书波, 张佳蕾, 高华鑫, 王才斌. 中国花生高产栽培研究进展与展望[J]. 作物学报, 2025, 51(7): 1703-1711.
[2] 郭腾达, 崔梦杰, 陈琳杰, 韩锁义, 郭敬坤, 吴晨迪, 付留洋, 黄冰艳, 董文召, 张新友. 花生磷脂酰肌醇转运蛋白基因AhSFH的克隆及其响应黄曲霉菌侵染的表达特征分析[J]. 作物学报, 2025, 51(6): 1489-1500.
[3] 李文佳, 廖泳俊, 黄璐, 鲁清, 李少雄, 陈小平, 金晶炜, 王润风. 花生开花时间的全基因组关联分析及候选基因筛选[J]. 作物学报, 2025, 51(5): 1400-1408.
[4] 迟晓元, 毕竞男, 赵健鑫, 陈娜, 潘丽娟, 姜骁, 殷祥贞, 赵旭红, 马俊卿, 许静. 花生荚果力学特性评鉴及早熟种质筛选[J]. 作物学报, 2025, 51(4): 943-957.
[5] 林伟津, 郭泽佳, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 陈小平, 洪彦彬, 李少雄, 鲁清. 花生荚果产量相关性状QTL定位与候选基因分析[J]. 作物学报, 2025, 51(4): 969-981.
[6] 金欣欣, 宋亚辉, 苏俏, 杨永庆, 李玉荣, 王瑾. 冀花系列高油酸花生抗旱性鉴定与综合评价[J]. 作物学报, 2025, 51(3): 797-811.
[7] 晋高锐, 吴小丽, 邓丽, 陈玉宁, 喻博伦, 郭建斌, 丁膺宾, 刘念, 罗怀勇, 陈伟刚, 黄莉, 周小静, 淮东欣, 谭家壮, 姜慧芳, 任丽, 雷永, 廖伯寿. 兼抗黄曲霉侵染和产毒高油酸花生新种质的创制与评价[J]. 作物学报, 2025, 51(3): 687-895.
[8] 胡朋举, 郭颂, 宋亚辉, 金欣欣, 苏俏, 杨永庆, 王瑾. 多环境下花生含油量遗传及QTL定位分析[J]. 作物学报, 2025, 51(2): 324-333.
[9] 赵斐斐, 李少雄, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 洪彦彬, 陈小平, 鲁清, 曹玉曼. 花生主茎节间和侧枝节间长度的关联作图及候选基因分析[J]. 作物学报, 2025, 51(2): 548-556.
[10] 王润风, 李文佳, 廖泳俊, 鲁清, 刘浩, 李海芬, 李少雄, 梁炫强, 洪彦彬, 陈小平. 花生核心种质资源荚果成熟度评鉴及早熟种质筛选[J]. 作物学报, 2025, 51(2): 395-404.
[11] 崔梦杰, 王督, 齐飞艳, 孙子淇, 郭敬坤, 刘华, 黄冰艳, 董文召, 代小冬, 韩锁义, 张新友. 抗黄曲霉产毒花生种质的筛选与评价[J]. 作物学报, 2025, 51(11): 2996-3004.
[12] 姜骁, 赵健鑫, 毕竞男, 许静, 殷祥贞, 赵旭红, 潘丽娟, 陈娜, 马俊卿, 韩鹏, 杨珍, 迟晓元. 中国北方主产区主要地理和气候因子对花生农艺性状和品质的影响[J]. 作物学报, 2025, 51(10): 2805-2820.
[13] 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166.
[14] 朱荣昱, 赵蒙杰, 姚云凤, 李艳红, 李向东, 刘兆新. 秸秆还田方式与播种深度对夏直播花生土壤物理性状与出苗特性的影响[J]. 作物学报, 2024, 50(8): 2106-2121.
[15] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[3] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[4] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[5] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[6] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[7] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61 -66 .
[8] 杨文雄;杨芳萍;梁丹;何中虎;尚勋武;夏先春. 中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测[J]. 作物学报, 2008, 34(07): 1109 -1113 .
[9] 王英;吴存祥;张学明;王云鹏;韩天富. 不同光周期条件下大豆生育期主基因的效应[J]. 作物学报, 2008, 34(07): 1160 -1168 .
[10] 王国莉;郭振飞. 磷营养对水稻不同耐冷品种光合特性的影响[J]. 作物学报, 2007, 33(08): 1385 -1389 .