欢迎访问作物学报,今天是

作物学报

• •    

抗黄曲霉产毒花生种质的筛选与评价

崔梦杰1,王督2,齐飞艳1,孙子淇1,郭敬坤1,刘华1,黄冰艳1,董文召1,代小冬1,韩锁义1,*,张新友1,*   

  1. 1 河南省作物分子育种研究院 / 神农种业实验室 / 农业农村部黄淮海油料作物重点实验室 / 河南省油料作物遗传改良重点实验室, 河南郑州 450002; 2 农业农村部生物毒素检测重点实验室 / 中国农业科学院油料作物研究所, 湖北武汉 430062
  • 收稿日期:2025-04-11 修回日期:2025-07-09 接受日期:2025-07-09 网络出版日期:2025-07-17
  • 通讯作者: 张新友, E-mail: haasxinyou@163.com; 韩锁义, E-mail: suoyi_han@126.com
  • 基金资助:
    本研究由河南省农业科学院优秀青年基金项目(2024YQ03), 国家自然科学基金青年科学基金项目(32301851), 河南省科技研发联合基金项目(242301420023)和河南省科技攻关项目(242102110308)资助。

Screening and evaluation of peanut germplasms for resistance to aflatoxin production

CUI Meng-Jie1,WANG Du2,QI Fei-Yan1,SUN Zi-Qi1,GUO Jing-Kun1,LIU Hua1,HUANG Bing-Yan1,DONG Wen-Zhao1,DAI Xiao-Dong1,HAN Suo-Yi1,*,ZHANG Xin-You1,*   

  1. 1 Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences / The Shennong Laboratory / Key Laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture and Rural Affairs / Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, Henan, China; 2 Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs / Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, Hubei, China
  • Received:2025-04-11 Revised:2025-07-09 Accepted:2025-07-09 Published online:2025-07-17
  • Supported by:
    This study was supported by the Excellent Youth Fund Project of Henan Academy of Agricultural Sciences (2024YQ03), the Youth Fund Project of National Natural Science Foundation of China (32301851), the Henan Province Science and Technology R&D Joint Fund (242301420023) and the Science and Technology Research Project of Henan Province (242102110308).

摘要:

黄曲霉毒素污染是制约花生产业健康发展的重要因素之一,而培育抗产毒花生品种是从根本上解决这一问题的有效方式。为评估国内外花生种质的产毒抗性能力,本研究以侵染抗性鉴定过的320份花生种质为材料,采用高效液相色谱-质谱联用法(HPLC-MS)测定籽仁中的黄曲霉毒素B1 (AFB1)和B2 (AFB2)含量,筛选抗产毒花生种质,并分析毒素含量与侵染指数、籽仁营养品质之间的相关性,同时比较不同植物学类型、株型种质间黄曲霉毒素含量之间的差异。研究结果表明,前期基于320份种质筛选获得的13份稳定抗侵染花生材料中,黄曲霉毒素B1含量均显著低于抗产毒对照品种,其中C203和C206的毒素含量低于10.00 mg kg?1,表现为稳定高抗侵染和抗产毒特性。相关性结果表明,黄曲霉毒素B1B2含量呈极显著正相关(P < 0.001),侵染指数与毒素含量亦呈极显著正相关(P < 0.001)。此外,籽仁营养品质性状与黄曲霉毒素含量之间无显著相关性。对不同植物学类型和株型的分析表明,抗产毒材料在普通型和蔓生型花生种质中占比更高。综上所述,本研究筛选出13份兼具稳定抗侵染和抗产毒特性的花生种质,可作为优异抗源用于黄曲霉抗性基因挖掘和抗黄曲霉花生品种的遗传改良。

关键词: 花生, 黄曲霉毒素, 种质资源, 抗产毒, 优异抗源

Abstract:

Aflatoxin contamination is a major constraint to the healthy development of the peanut industry. Breeding peanut varieties with resistance to aflatoxin production is an effective strategy for the fundamental prevention and control of aflatoxin contamination. In this study, the resistance to aflatoxin production was evaluated in both domestic and exotic peanut germplasms previously identified as resistant to Aspergillus flavus infection. The concentrations of aflatoxin B1 (AFB1) and B2 (AFB2) in peanut kernels were determined using high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS) to screen for aflatoxin-resistant germplasms. The study also assessed the correlations between aflatoxin content and infection index, as well as kernel nutritional quality. In addition, differences in aflatoxin content among germplasms of different botanical and plant types were analyzed. Results showed that 13 peanut germplasms, selected from 320 accessions with stable resistance to A. flavus infection, exhibited significantly lower AFB1 levels than the aflatoxin-resistant control. Among these, C203 and C206 had AFB1 concentrations below 10.00 mg kg?1, indicating consistently high resistance to both infection and aflatoxin production. Correlation analysis revealed a highly significant positive relationship between AFB1 and AFB2 contents (P < 0.001), as well as between infection index and aflatoxin content (P < 0.001). No significant correlation was observed between aflatoxin content and kernel nutritional quality traits of kernels. Analysis of different botanical types and plant types indicated that aflatoxin-resistant materials were more prevalent from peanut germplasms with var. hypogaea/prostrate. In conclusion, 13 peanut germplasms with stable resistance to both A. flavus infection and aflatoxin production were identified, providing valuable genetic resources for the discovery of aflatoxin resistance genes and the development of resistant peanut varieties.

Key words: peanut, aflatoxin, genetic resources, aflatoxin-resistant, novel resistance resource

[1] 万书波, 王才斌, 郭峰, 单世华. 山东花生产业现状、问题及十二五发展对策. 山东农业科学, 2011, 43(1): 114–118.
Wan S B, Wang C B, Guo F, Shan S H. Status, problems of Shandong peanut industry and their countermeasures in the twelfth Five-year Plan. Shandong Agric Sci, 2011, 43(1): 114–118 (in Chinese).

[2] Liao B S, Zhuang W J, Tang R H, Zhang X Y, Shan S H, Jiang H F, Huang J Q. Peanut aflatoxin and genomics research in China: progress and perspectives. Peanut Sci, 2009, 36: 21–28.

[3] Soni P, Gangurde S S, Ortega-Beltran A, Kumar R, Parmar S, Sudini H K, Lei Y, Ni X Z, Huai D X, Fountain J C, et al. Functional biology and molecular mechanisms of host-pathogen interactions for aflatoxin contamination in groundnut (Arachis hypogaea L.) and maize (Zea mays L.). Front Microbiol, 2020, 11: 227.

[4] Bhatnagar-Mathur P, Sunkara S, Bhatnagar-Panwar M, Waliyar F, Sharma K K. Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops. Plant Sci, 2015, 234: 119–132.

[5] 杨永. 花生油压榨中黄曲霉毒素的预防策略研究. 食品安全导刊, 2021, (34): 187–189.
Yang Y. Study on prevention strategy of aflatoxin in peanut oil pressing. China Food Saf Mag, 2021, (34): 187–189 (in Chinese with English abstract).

[6] Gangurde S S, Korani W, Bajaj P, Wang H, Fountain J C, Agarwal G, Pandey M K, Abbas H K, Chang P K, Holbrook C C, et al. Aspergillus flavus pangenome (AflaPan) uncovers novel aflatoxin and secondary metabolite associated gene clusters. BMC Plant Biol, 2024, 24: 354.

[7] Shabeer S, Asad S, Jamal A, Ali A. Aflatoxin contamination, its impact and management strategies: an updated review. Toxins, 2022, 14: 307.

[8] Yu B, Huai D, Huang L, Kang Y, Ren X P, Chen Y N, Zhou X J, Luo H Y, Liu N, Chen W G, et al. Identification of genomic regions and diagnostic markers for resistance to aflatoxin contamination in peanut (Arachis hypogaea L.). BMC Genet, 2019, 20: 32.

[9] Nigam S, Waliyar F, Aruna R S N, Reddy S V, Kumar P L, Craufurd P Q, Diallo A T, Ntare B R, Upadhyaya H D. Breeding peanut for resistance to aflatoxin contamination at ICRISAT. Peanut Sci, 2009, 36: 42–49.

[10] Mehan V K, McDonald D, Rajagopalan K. Resistance of peanut genotypes to seed infection by Aspergillus flavus in field trials in India. Peanut Sci, 1987, 14: 17–21.

[11] 洪彦彬, 李少雄, 刘海燕, 周桂元, 陈小平, 温世杰, 梁炫强. SSR标记与花生抗黄曲霉性状的关联分析. 分子植物育种, 2009, 7: 360–364.
Hong Y B, Li S X, Liu H Y, Zhou G Y, Chen X P, Wen S J, Liang X Q. Correlation analysis of SSR markers and host resistance to Aspergillus flavus infection in peanut (Arachis hypogaea L.). Mol Plant Breed, 2009, 7: 360–364 (in Chinese with English abstract).

[12] 庄伟建, 方树民, 李毓, 陈永水, 程忠, 陈玉森. 花生品种()抗黄曲霉筛选鉴定. 福建农业学报, 2007, 22: 261–265.
Zhuang W J, Fang S M, Li Y, Chen Y S, Cheng Z, Chen Y S. Screening and identification of resistant peanut varieties and strains to Aspergillus flavus. Fujian J Agric Sci, 2007, 22: 261–265 (in Chinese with English abstract).

[13] Mixon A C, Rogers K M. Peanut accessions resistant to seed infection by Aspergillus flavus. Agron J, 1973, 65: 560–562.

[14] 沈文凤, 王明清, 于丽娜, 宋昱, 高远, 迟晓元, 杨珍, 江晨, 毕洁, 王希平. 抗黄曲霉侵染与产毒的花生品种筛选. 花生学报, 2024, 53(2): 77–82.
Shen W F, Wang M Q, Yu L N, Song Y, Gao Y, Chi X Y, Yang Z, Jiang C, Bi J, Wang X P. Screening of peanut varieties resistant to Aspergillus flavus infection and toxicity. J Peanut Sci, 2024, 53(2): 77–82 (in Chinese with English abstract).

[15] 蒋艺飞, 喻博伦, 丁膺宾, 陈伟刚, 郭建斌, 陈海文, 罗怀勇, 刘念, 黄莉, 周小静, 等. 花生抗黄曲霉大果种质的创制与鉴定. 中国油料作物学报, 2022, 44: 72–77.
Jiang Y F, Yu B L, Ding Y B, Chen W G, Guo J B, Chen H W, Luo H Y, Liu N, Huang L, Zhou X J, et al. Development and characterization of novel large-podded peanut genotypes with resistance to aflatoxin contamination. Chin J Oil Crop Sci, 2022, 44: 72–77 (in Chinese with English abstract).

[16] 晋高锐, 吴小丽, 邓丽, 陈玉宁, 喻博伦, 郭建斌, 丁膺宾, 刘念, 罗怀勇, 陈伟刚, 等. 兼抗黄曲霉侵染和产毒高油酸花生新种质的创制与评价. 作物学报, 2025, 51: 687–695.
Jin G R, Wu X L, Deng L, Chen Y N, Yu B L, Guo J B, Ding Y B, Liu N, Luo H Y, Chen W G, et al. Development and characterization of novel peanut genetic stocks with high oleic acid and enhanced resistance both to Aspergillus flavus infection and aflatoxin production. Acta Agron Sin, 2025, 51: 687–695 (in Chinese with English abstract).

[17] 王后苗. 花生抗黄曲霉菌产毒机制的研究. 中国农业科学院博士学位论文, 北京, 2016.

Wang H M. Study on the Mechanism of Peanut Resistance to Aspergillus flavus. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2016 (in Chinese with English abstract).

[18] Fu J Y, Gu M, Yan H L, Zhang M H, Xie H L, Yue X F, Zhang Q, Li P W. Protein biomarker for early diagnosis of microbial toxin contamination: Using Aspergillus flavus as an example. Food Front, 2023, 4: 2013–2023.

[19] 崔梦杰, 孙子淇, 齐飞艳, 刘华, 徐静, 杜培, 黄冰艳, 董文召, 韩锁义, 张新友. 国内外322份花生种质资源黄曲霉侵染抗性评价. 中国农业科学, 2025, 58: 23032315.
Cui M J, Sun Z Q, Qi F Y, Liu H, Xu J, Du P, Huang B Y, Dong W Z, Han S Y, Zhang X Y. Evaluation of 322 peanut germplasms for resistance to Aspergillus flavus infection. Sci Agric Sin, 2025, 58: 23032315 (in Chinese with English abstract).

[20] 崔梦杰. 花生种子黄曲霉抗性相关基因的鉴定与分析. 南京农业大学博士学位论文, 江苏南京, 2022.
Cui M J. Identification and Analysis of Genes Associated with Resistance to Aspergillus flavus in Cultivated Peanut (Arachis hypogaea L.) Seeds. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2022 (in Chinese with English abstract).

[21] Zheng Z, Sun Z Q, Qi F Y, Fang Y J, Lin K, Pavan S, Huang B Y, Dong W Z, Du P, Tian M D, et al. Chloroplast and whole-genome sequencing shed light on the evolutionary history and phenotypic diversification of peanuts. Nat Genet, 2024, 56: 1975–1984.

[22] 秦利, 刘华, 杜培, 董文召, 黄冰艳, 韩锁义, 张忠信, 齐飞艳, 张新友. 基于近红外光谱法的花生籽仁中蔗糖含量的测定. 中国油料作物学报, 2016, 38: 666–671.
Qin L, Liu H, Du P, Dong W Z, Huang B Y, Han S Y, Zhang Z X, Qi F Y, Zhang X Y. Determination of sucrose content in peanut seed kernel based on near infrared spectroscopy. Chin J Oil Crop Sci, 2016, 38: 666–671 (in Chinese with English abstract).

[23] 禹山林. 中国花生品种及其系谱. 上海: 上海科学技术出版社, 2008.
Yu S L. Peanut Varieties and Their Pedigrees in China. Shanghai: Shanghai Scientific & Technical Publishers, 2008 (in Chinese).

[24] Kew M C. Aflatoxins as a cause of hepatocellular carcinoma. J Gastrointestin Liver Dis, 2013, 22: 305–310.

[25] Caceres I, Khoury A A, Khoury R E, Lorber S, Oswald I P, Khoury A E, Atoui A, Puel O, Bailly J D. Aflatoxin biosynthesis and genetic regulation: a review. Toxins (Basel), 2020, 12: 150.

[26] Settaluri V S, Kandala C V K, Puppala N, Sundaram J. Peanuts and their nutritional aspects: a review. Food Nutr Sci, 2012, 3: 1644–1650.

[27] Huang L, He H Y, Chen W G, Ren X P, Chen Y N, Zhou X J, Xia Y L, Wang X L, Jiang X G, Liao B S, et al. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2015, 128: 1103–1115.

[28] Cuero R G, Osuji G O. Aspergillus flavus-induced chitosanase in germinating corn and peanut seeds: A. flavus mechanism for growth dominance over associated fungi and concomitant aflatoxin production. Food Addit Contam, 1995, 12: 479–483.

[29] Chen Z Y, Brown R L, Rajasekaran K, Damann K E, Cleveland T E. Identification of a maize kernel pathogenesis-related protein and evidence for its involvement in resistance to Aspergillus flavus infection and aflatoxin production. Phytopathology, 2006, 96: 87–95.

[1] 万书波, 张佳蕾, 高华鑫, 王才斌. 中国花生高产栽培研究进展与展望[J]. 作物学报, 2025, 51(7): 1703-1711.
[2] 郭腾达, 崔梦杰, 陈琳杰, 韩锁义, 郭敬坤, 吴晨迪, 付留洋, 黄冰艳, 董文召, 张新友. 花生磷脂酰肌醇转运蛋白基因AhSFH的克隆及其响应黄曲霉菌侵染的表达特征分析[J]. 作物学报, 2025, 51(6): 1489-1500.
[3] 梁红凯, 赵苏蒙, 陆琼, 周鹏, 智慧, 刁现民, 贺强. 谷子微核心种质的构建[J]. 作物学报, 2025, 51(6): 1435-1444.
[4] 旺姆, 卓嘎, 扎桑, 西若曲宗, 达瓦顿珠, 郭刚刚, 张京, 卓嘎, 伦珠朗杰. 基于6个表型性状的青稞种质遗传多样性分析及综合评价[J]. 作物学报, 2025, 51(6): 1526-1537.
[5] 李文佳, 廖泳俊, 黄璐, 鲁清, 李少雄, 陈小平, 金晶炜, 王润风. 花生开花时间的全基因组关联分析及候选基因筛选[J]. 作物学报, 2025, 51(5): 1400-1408.
[6] 林伟津, 郭泽佳, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 陈小平, 洪彦彬, 李少雄, 鲁清. 花生荚果产量相关性状QTL定位与候选基因分析[J]. 作物学报, 2025, 51(4): 969-981.
[7] 迟晓元, 毕竞男, 赵健鑫, 陈娜, 潘丽娟, 姜骁, 殷祥贞, 赵旭红, 马俊卿, 许静. 花生荚果力学特性评鉴及早熟种质筛选[J]. 作物学报, 2025, 51(4): 943-957.
[8] 晋高锐, 吴小丽, 邓丽, 陈玉宁, 喻博伦, 郭建斌, 丁膺宾, 刘念, 罗怀勇, 陈伟刚, 黄莉, 周小静, 淮东欣, 谭家壮, 姜慧芳, 任丽, 雷永, 廖伯寿. 兼抗黄曲霉侵染和产毒高油酸花生新种质的创制与评价[J]. 作物学报, 2025, 51(3): 687-895.
[9] 金欣欣, 宋亚辉, 苏俏, 杨永庆, 李玉荣, 王瑾. 冀花系列高油酸花生抗旱性鉴定与综合评价[J]. 作物学报, 2025, 51(3): 797-811.
[10] 王润风, 李文佳, 廖泳俊, 鲁清, 刘浩, 李海芬, 李少雄, 梁炫强, 洪彦彬, 陈小平. 花生核心种质资源荚果成熟度评鉴及早熟种质筛选[J]. 作物学报, 2025, 51(2): 395-404.
[11] 胡朋举, 郭颂, 宋亚辉, 金欣欣, 苏俏, 杨永庆, 王瑾. 多环境下花生含油量遗传及QTL定位分析[J]. 作物学报, 2025, 51(2): 324-333.
[12] 赵斐斐, 李少雄, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 洪彦彬, 陈小平, 鲁清, 曹玉曼. 花生主茎节间和侧枝节间长度的关联作图及候选基因分析[J]. 作物学报, 2025, 51(2): 548-556.
[13] 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166.
[14] 孙现军, 胡正, 姜雪敏, 王世佳, 陈向前, 张惠媛, 张辉, 姜奇彦. 大豆种质资源苗期耐盐性鉴定评价与筛选[J]. 作物学报, 2024, 50(9): 2179-2186.
[15] 朱荣昱, 赵蒙杰, 姚云凤, 李艳红, 李向东, 刘兆新. 秸秆还田方式与播种深度对夏直播花生土壤物理性状与出苗特性的影响[J]. 作物学报, 2024, 50(8): 2106-2121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!