欢迎访问作物学报,今天是

作物学报

• •    

花生磷脂酰肌醇转运蛋白基因AhSFH的克隆及其响应黄曲霉菌侵染的表达特征分析

郭腾达1,2,崔梦杰2,*,陈琳杰2,韩锁义1,2,郭敬坤1,2,吴晨迪2,付留洋1,黄冰艳2,董文召2,张新友1,2,*   

  1. 1郑州大学生命科学学院, 河南郑州 450001; 2河南省作物分子育种研究院 / 农业农村部黄淮海油料作物重点实验室 / 河南省油料作物遗传改良重点实验室, 河南郑州 450002
  • 收稿日期:2024-11-19 修回日期:2025-03-26 接受日期:2025-03-26 出版日期:2025-04-07 网络出版日期:2025-04-07
  • 基金资助:
    本研究由国家自然科学基金青年科学基金项目(32301851), 河南省农业科学院优秀青年基金项目(2024YQ03)和河南省科技攻关项目(242102110308)资助。

Cloning and expression analysis of the phosphatidylinositol transfer protein AhSFH gene in peanuts responsive to Aspergillus flavus infection

GUO Teng-Da1,2,CUI Meng-Jie2,*,CHEN Lin-Jie2,HAN Suo-Yi1,2,GUO Jing-Kun1,2,WU Chen-Di2,FU Liu-Yang1,HUANG Bing-Yan2,DONG Wen-Zhao2,ZHANG Xin-You1,2,*   

  1. 1 School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; 2 Henan Academy of Crop Molecular Breeding / Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs / Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, Henan, China
  • Received:2024-11-19 Revised:2025-03-26 Accepted:2025-03-26 Published:2025-04-07 Published online:2025-04-07
  • Supported by:
    This study was supported by the Youth Fund Project of National Natural Science Foundation of China (32301851), the Excellent Youth Fund Project of Henan Academy of Agricultural Sciences (2024YQ03), and the Science and Technology Research Project of Henan Province (242102110308).

摘要:

磷脂酰肌醇转运蛋白(phosphatidylinositol transfer protein, PITP)是真核生物细胞内膜系统间转运磷脂酰肌醇和磷脂酰胆碱单体的一类蛋白质,其参与植物生长发育、信号转导、逆境胁迫响应等多种重要的生命过程。花生中响应黄曲霉侵染的PITP基因尚未见报道。本研究以高抗黄曲霉侵染花生种质“J11”材料,利用RT-PCR技术克隆获得花生磷脂酰肌醇转运蛋白类基因,并通过生物信息学分析、实时荧光定量PCR (RT-qPCR)技术、亚细胞定位等对其进行分子特征鉴定和功能预测。结果显示,该基因编码区序列长度为1836 bp,编码一个分子式为C3114H4938N880O943S35、包含611个氨基酸、分子量为70.91 kD、等电点为7.84的不稳定亲水性蛋白。该蛋白无信号肽和跨膜结构域,含有典型的Sec14Nodulin结构域,属于植物PITP家族的SFH亚族,将其命名为AhSFH,与大豆和蓖麻SFH蛋白有较近的亲缘关系。亚细胞定位结果显示,AhSFH蛋白主要定位于细胞质中。启动子作用元件分析发现,AhSFH基因启动子区包含大量的光响应、激素和胁迫响应元件。转录组和RT-qPCR分析发现,在黄曲霉侵染初期(T2~T3)AhSFH基因在抗性材料中的表达水平急剧上升,且显著高于高感材料。蛋白互作预测分析显示,AhSFH蛋白与多个转移酶相关家族蛋白具有关联性。本研究表明,花生AhSFH基因可强烈响应黄曲霉的侵染,可能在抗性花生材料抵抗黄曲霉侵染中发挥正调控作用。

关键词: 花生, 磷脂酰肌醇转运蛋白, AhSFH, 黄曲霉, 表达分析

Abstract:

Phosphatidylinositol transfer proteins (PITPs) are a class of proteins responsible for transporting phosphatidylinositol and phosphatidylcholine monomers across the inner membrane systems of eukaryotic cells. They play essential roles in plant growth and development, signal transduction, stress responsesand other vital biological processes. To date, the involvement of PITP genes in peanut (Arachis hypogaea) responses to Aspergillus flavus infection has not been reported. In this study, the PITP gene was cloned from the highly resistant peanut variety “J11” using RT-PCR, and its molecular characterization and functional prediction were analyzed through bioinformatics, RT-qPCR, and subcellular localization studies. The results showed that the gene’s coding region is 1836 bp in length, encoding an unstable hydrophilic protein with the molecular formula C3114H4938N880O943S35. The protein consists of 611 amino acids, with a molecular weight of 70.91 kD and an isoelectric point of 7.84. It lacks signal peptide and transmembrane domains but contains typical Sec14 and nodulin domains. It belongs to the SFH subfamily of the plant PITP family and is closely related to soybean and ricinus SFH proteins. Subcellular localization analysis indicated that the AhSFH protein is primarily localized in the cytoplasm. Promoter cis-acting element analysis revealed that the AhSFH promoter contains large number of light-, hormone-, and stress-responsive elements. Transcriptome and RT-qPCR analyses showed that AhSFH expression increased sharply in resistant materials during the early stages of A. flavus infection (T2–T3), surpassing the expression levels observed in highly susceptible materials. Additionally, protein interaction prediction suggested that AhSFH is associated with several transferase-related family proteins. These findings indicate that the AhSFH gene in peanuts plays a crucial role in responding to A. flavus infection and may function as a positive regulator in enhancing peanut resistance to this pathogen.

Key words: peanut, phosphatidylinositol transport protein, AhSFH, Aspergillus flavus, expression analysis

[1] Huang J, Ghosh R, Bankaitis V A. Sec14-like phosphatidylinositol transfer proteins and the biological landscape of phosphoinositide signaling in plants. Biochim Biophys Acta, 2016, 1861: 1352–1364.

[2] Novick P, Field C, Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell, 1980, 21: 205–215.

[3] Szolderits G, Hermetter A, Paltauf F, Daum G. Membrane properties modulate the activity of a phosphatidylinositol transfer protein from the yeast, Saccharomyces cerevisiae. Biochim Biophys Acta, 1989, 986: 301–309.

[4] Bankaitis V A, Aitken J R, Cleves A E, Dowhan W. An essential role for a phospholipid transfer protein in yeast Golgi function. Nature, 1990, 347: 561–562.

[5] Bankaitis V A, Mousley C J, Schaaf G. The Sec14 superfamily and mechanisms for crosstalk between lipid metabolism and lipid signaling. Trends Biochem Sci, 2010, 35: 150–160.

[6] Ren J H, Schaaf G, Bankaitis V A, Ortlund E A, Pathak M C. Crystallization and preliminary X-ray diffraction analysis of Sfh3, a member of the Sec14 protein superfamily. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2011, 67: 1239–1243.

[7] Aravind L, Iyer L M. The HARE-HTH and associated domains: novel modules in the coordination of epigenetic DNA and protein modifications. Cell Cycle, 2012, 11: 119–131.

[8] Anantharaman V, Aravind L. The GOLD domain, a novel protein module involved in Golgi function and secretion. Genome Biol, 2002, 3: research0023.

[9] Kapranov P, Routt S M, Bankaitis V A, de Bruijn F J, Szczyglowski K. Nodule-specific regulation of phosphatidylinositol transfer protein expression in Lotus japonicus. Plant Cell, 2001, 13: 1369–1382.

[10] Qin Y X, Zhang B, Wang Y N, Su R P. Characterization of SEC14 family in wheat and the function of TaSEC14-7B in salt stress tolerance. Plant Physiol Biochem, 2023, 202: 107926.

[11] Yang M L, Sakruaba Y, Ishikawa T, Ohtsuki N, Kawai-Yamada M, Yanagisawa S. Chloroplastic Sec14-like proteins modulate growth and phosphate deficiency responses in Arabidopsis and rice. Plant Physiol, 2023, 192: 3030–3048.

[12] Mao H Y, Wang W J, Su W H, Su Y C, Liu F, Li C N, Wang L, Zhang X, Xu L P, Que Y X. Genome-wide identification, phylogeny, and expression analysis of Sec14-like PITP gene family in sugarcane. Plant Cell Rep, 2019, 38: 637–655.

[13] 毛花英, 刘峰, 苏炜华, 黄宁, 凌辉, 张旭, 王文举, 李聪娜, 汤翰臣, 苏亚春, 等. 甘蔗磷脂酰肌醇转运蛋白基因ScSEC14响应干旱和盐胁迫. 作物学报, 2018, 44: 824–835.
Mao H Y, Liu F, Su W H, Huang N, Ling H, Zhang X, Wang W J, Li C N, Tang H C, Su Y C, et al. A sugarcane phosphatidylinositol transfer protein gene ScSEC14 responds to drought and salt stresses. Acta Agron Sin, 2018, 44: 824–835 (in Chinese with English abstract).

[14] 王晓宇, 李敏, 刘栩铭, 卜祥琪, 丁雪, 张继星. 蓖麻RcSEC14p基因的克隆及低温胁迫下的表达分析. 分子植物育种, 2019, 17: 4204–4209.
Wang X Y, Li M, Liu X M, Bu X Q, Ding X, Zhang J X. Cloning of RcSEC14p gene in Ricinus communis L. and expression analysis under cold stress. Mol Plant Breed, 2019, 17: 4204–4209 (in Chinese with English abstract).

[15] Kiba A, Nakano M, Vincent-Pope P, Takahashi H, Sawasaki T, Endo Y, Ohnishi K, Yoshioka H, Hikichi Y. A novel Sec14 phospholipid transfer protein from Nicotiana benthamiana is up-regulated in response to Ralstonia solanacearum infection, pathogen associated molecular patterns and effector molecules and involved in plant immunity. J Plant Physiol, 2012, 169: 1017–1022.

[16] Kiba A, Nakano M, Ohnishi K, Hikichi Y. The SEC14 phospholipid transfer protein regulates pathogen-associated molecular pattern-triggered immunity in Nicotiana benthamiana. Plant Physiol Biochem, 2018, 125: 212–218.

[17] Wang X Y, Shan X H, Xue C M, Wu Y, Su S Z, Li S P, Liu H K, Jiang Y, Zhang Y F, Yuan Y P. Isolation and functional characterization of a cold responsive phosphatidylinositol transfer-associated protein, ZmSEC14p, from maize (Zea may L.). Plant Cell Rep, 2016, 35: 1671–1686.

[18] 苏世超, 唐益苗, 徐磊, 王伟伟, 高世庆, 马锦绣, 孙辉, 王永波, 乔亚科, 赵昌平. 普通小麦TaSEC14p-5基因的克隆及表达分析. 农业生物技术学报, 2016, 24: 1129–1137.
Su S C, Tang Y M, Xu L, Wang W W, Gao S Q, Ma J X, Sun H, Wang Y B, Qiao Y K, Zhao C P. Cloning and expression analysis of TaSEC14p-5 gene from wheat (Triticum aestivum). J Agric Biotechnol, 2016, 24: 1129–1137 (in Chinese with English abstract).

[19] Burow M D, Simpson C E, Starr J L, Paterson A H. Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.) broadening the gene pool of a monophyletic polyploid species. Genetics, 2001, 159: 823–837.

[20] Settaluri V S, Kandala C V K, Puppala N, Sundaram J. Peanuts and their nutritional aspects: a review. Food Nutr Sci, 2012, 3: 1644–1650.

[21] Huang L, He H Y, Chen W G, Ren X P, Chen Y N, Zhou X J, Xia Y L, Wang X L, Jiang X G, Liao B S, et al. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2015, 128: 1103–1115.

[22] Huang R H, Li H Q, Gao C J, Yu W C, Zhang S C. Advances in omics research on peanut response to biotic stresses. Front Plant Sci, 2023, 14: 1101994.

[23] Patel J, Khandwal D, Choudhary B, Ardeshana D, Jha R K, Tanna B, Yadav S, Mishra A, Varshney R K, Siddique K H M. Differential physio-biochemical and metabolic responses of peanut (Arachis hypogaea L.) under multiple abiotic stress conditions. Int J Mol Sci, 2022, 23: 660.

[24] 王后苗, 廖伯寿. 农作物收获前黄曲霉毒素污染与控制措施. 作物学报, 2012, 38: 1–9.
Wang H M, Liao B S. Preharvest aflatoxin contamination in crops and its management. Acta Agron Sin, 2012, 38: 1–9 (in Chinese with English abstract).

[25] 王旭达, 张高华, 王鹤, 于树涛, 李怀梅, 王晓燕, 范琦. 锌指蛋白基因ZAT12提高转基因高油酸花生抗寒性. 分子植物育种, 2020, 18: 5351–5360.
Wang X D, Zhang G H, Wang H, Yu S T, Li H M, Wang X Y, Fan Q. Enhancing cold tolerance of transgenic high oleic peanut by zinc finger protein gene ZAT12. Mol Plant Breed, 2020, 18: 5351–5360 (in Chinese with English abstract).

[26] 王旭达, 于树涛, 张高华, 王鹤, 丰明, 都兴范, 范琦, 于国庆. 农杆菌介导花生转化体系的优化及转化AlDREB2A基因花生的耐旱性研究. 中国农业大学学报, 2018, 23(7): 26–35.
Wang X D, Yu S T, Zhang G H, Wang H, Feng M, Du X F, Fan Q, Yu G Q. Optimization of Agrobacterium tumerfaciens mediated peanut transformation system and studies on the drought tolerance of transgenic AIDREB2A peanut. J China Agric Univ, 2018, 23(7): 26–35 (in Chinese with English abstract).

[27] Kisyombe C T, Beute M K, Payne G A. Field evaluation of peanut genotypes for resistance to infection by Aspergillus parasiticus1, 2. Peanut Sci, 1985, 12: 12–17.

[28] Cui M J, Han S Y, Wang D, Haider M S, Guo J J, Zhao Q, Du P, Sun Z Q, Qi F Y, Zheng Z, et al. Gene co-expression network analysis of the comparative transcriptome identifies hub genes associated with resistance to Aspergillus flavus in cultivated peanut (Arachis hypogaea L.). Front Plant Sci, 2022, 13: 899177.

[29] Bjellqvist B, Hughes G J, Pasquali C, Paquet N, Ravier F, Sanchez J C, Frutiger S, Hochstrasser D. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis, 1993, 14: 1023–1031.

[30] Bjellqvist B, Basse B, Olsen E, Celis J E. Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophoresis, 1994, 15: 529–539.

[31] 代洪苇, 刘洁强, 张丽, 童华荣, 袁连玉. 茶树CsMCC1CsMCC2基因的克隆及表达特征性分析. 作物学报, 2024, 50: 656–668.
Dai H W, Liu J Q, Zhang L, Tong H R, Yuan L Y. Cloning and relative expression pattern analysis of CsMCC1 and CsMCC2 in tea plant (Camellia sinensis). Acta Agron Sin, 2024, 50: 656–668 (in Chinese with English abstract).

[32] Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer F T, de Beer T A P, Rempfer C, Bordoli L, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 2018, 46: W296–W303.

[33] Nielsen H, Teufel F, Brunak S, von Heijne G. SignalP: the evolution of a web server. Methods Mol Biol, 2024, 2836: 331–367.

[34] Krogh A, Larsson B, von Heijne G, Sonnhammer E L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol, 2001, 305: 567–580.

[35] Bailey T L, Johnson J, Grant C E, Noble W S. The MEME suite. Nucleic Acids Res, 2015, 43: W39–W49.

[36] Cui M J, Haider M S, Chai P P, Guo J J, Du P, Li H Y, Dong W Z, Huang B Y, Zheng Z, Shi L, et al. Genome-wide identification and expression analysis of AP2/ERF transcription factor related to drought stress in cultivated peanut (Arachis hypogaea L.). Front Genet, 2021, 12: 750761.

[37] Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol, 2021, 38: 3022–3027.

[38] Yu C S, Chen Y C, Lu C H, Hwang J K. Prediction of protein subcellular localization. Proteins, 2006, 64: 643–651.

[39] Chou K C, Shen H B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One, 2010, 5: e11335.

[40] Huang J, Ghosh R, Tripathi A, Lönnfors M, Somerharju P, Bankaitis V A. Two-ligand priming mechanism for potentiated phosphoinositide synthesis is an evolutionarily conserved feature of Sec14-like phosphatidylinositol and phosphatidylcholine exchange proteins. Mol Biol Cell, 2016, 27: 2317–2330.

[41] Snoek G T. Phosphatidylinositol transfer proteins: emerging roles in cell proliferation, cell death and survival. IUBMB Life, 2004, 56: 467–475.

[42] Cockcroft S, Garner K. Potential role for phosphatidylinositol transfer protein (PITP) family in lipid transfer during phospholipase C signalling. Adv Biol Regul, 2013, 53: 280–291.

[43] Kaye Peterman T, Ohol Y M, McReynolds L J, Luna E J. Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides. Plant Physiol, 2004, 136: 3080–3094.

[44] Peterman T K, Sequeira A S, Samia J A, Lunde E E. Molecular cloning and characterization of patellin1, a novel sec14-related protein, from zucchini (Cucurbita pepo). J Plant Physiol, 2006, 163: 1150–1158.

[45] Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H, Xu Y, Allen N, Bibikova T N, Gilroy S, Bankaitis V A. A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J Cell Biol, 2005, 168: 801–812.

[46] Kiba A, Galis I, Hojo Y, Ohnishi K, Yoshioka H, Hikichi Y. SEC14 phospholipid transfer protein is involved in lipid signaling-mediated plant immune responses in Nicotiana benthamiana. PLoS One, 2014, 9: e98150.

[47] Montag K, Ivanov R, Bauer P. Role of SEC14-like phosphatidylinositol transfer proteins in membrane identity and dynamics. Front Plant Sci, 2023, 14: 1181031.

[48] 毛花英, 苏亚春, 阙友雄. 植物Sec14-like磷脂酰肌醇转运蛋白: 变化的结构和多样的功能. 农业生物技术学报, 2019, 27: 348–360.
Mao H Y, Su Y C, Que Y X. Plant Sec14-1ike phosphatidylinositol transfer proteins: diverse structures and multi-functions. J Agric Biotechnol, 2019, 27: 348–360 (in Chinese with English abstract).

[49] Maiti S, Patro S, Pal A, Dey N. Identification of a novel salicylic acid inducible endogenous plant promoter regulating expression of CYR1 a CC-NB-LRR type candidate disease resistance gene in Vigna mungo. Plant Cell Tissue Organ Cult, 2015, 120: 489–505.

[50] Luo M, Dang P, Guo B Z, He G, Holbrook C C, Bausher M G, Lee R D. Generation of expressed sequence tags (ESTs) for gene discovery and marker development in cultivated peanut. Crop Sci, 2005, 45: 346–353.

[51] Guo B Z, Chen X P, Dang P, Scully B T, Liang X Q, Corley Holbrook C, Yu J J, Culbreath A K. Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection. BMC Dev Biol, 2008, 8: 12.

[52] Gelli M, Duo Y C, Konda A R, Zhang C, Holding D, Dweikat I. Identification of differentially expressed genes between Sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. BMC Genomics, 2014, 15: 179.

[53] 陈文玲, 张晴晴, 唐韶华, 龚伟, 洪月云. 甘油-3-磷酸酰基转移酶在植物脂质代谢、生长及逆境反应中的作用. 植物生理学报, 2018, 54: 725–735.
Chen W L, Zhang Q Q, Tang S H, Gong W, Hong Y Y. Glycerol-3-phosphate acyltransferase in lipid metabolism, growth and response to stresses in plants. Plant Physiol J, 2018, 54: 725–735 (in Chinese with English abstract).

[1] 林伟津, 郭泽佳, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 陈小平, 洪彦彬, 李少雄, 鲁清. 花生荚果产量相关性状QTL定位与候选基因分析[J]. 作物学报, 2025, 51(4): 969-981.
[2] 迟晓元, 毕竞男, 赵健鑫, 陈娜, 潘丽娟, 姜骁, 殷祥贞, 赵旭红, 马俊卿, 许静. 花生荚果力学特性评鉴及早熟种质筛选[J]. 作物学报, 2025, 51(4): 943-957.
[3] 潘炬忠, 韦萍, 朱德平, 邵胜雪, 陈珊珊, 韦雅倩, 高维维. 水稻转录因子OsERF104的克隆和功能研究[J]. 作物学报, 2025, 51(4): 900-913.
[4] 晋高锐, 吴小丽, 邓丽, 陈玉宁, 喻博伦, 郭建斌, 丁膺宾, 刘念, 罗怀勇, 陈伟刚, 黄莉, 周小静, 淮东欣, 谭家壮, 姜慧芳, 任丽, 雷永, 廖伯寿. 兼抗黄曲霉侵染和产毒高油酸花生新种质的创制与评价[J]. 作物学报, 2025, 51(3): 687-895.
[5] 金欣欣, 宋亚辉, 苏俏, 杨永庆, 李玉荣, 王瑾. 冀花系列高油酸花生抗旱性鉴定与综合评价[J]. 作物学报, 2025, 51(3): 797-811.
[6] 赵斐斐, 李少雄, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 洪彦彬, 陈小平, 鲁清, 曹玉曼. 花生主茎节间和侧枝节间长度的关联作图及候选基因分析[J]. 作物学报, 2025, 51(2): 548-556.
[7] 王润风, 李文佳, 廖泳俊, 鲁清, 刘浩, 李海芬, 李少雄, 梁炫强, 洪彦彬, 陈小平. 花生核心种质资源荚果成熟度评鉴及早熟种质筛选[J]. 作物学报, 2025, 51(2): 395-404.
[8] 胡朋举, 郭颂, 宋亚辉, 金欣欣, 苏俏, 杨永庆, 王瑾. 多环境下花生含油量遗传及QTL定位分析[J]. 作物学报, 2025, 51(2): 324-333.
[9] 祁稼民, 许春苗, 肖斌. 马铃薯TIFY基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(9): 2297-2309.
[10] 刘永惠, 沈一, 沈悦, 梁满, 沙琴, 张旭尧, 陈志德. 花生干旱诱导型启动子AhMYB44-11-Pro的克隆与功能分析[J]. 作物学报, 2024, 50(9): 2157-2166.
[11] 朱荣昱, 赵蒙杰, 姚云凤, 李艳红, 李向东, 刘兆新. 秸秆还田方式与播种深度对夏直播花生土壤物理性状与出苗特性的影响[J]. 作物学报, 2024, 50(8): 2106-2121.
[12] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
[13] 刘震, 陈丽敏, 李志涛, 朱金勇, 王玮璐, 齐喆颖, 姚攀锋, 毕真真, 孙超, 白江平, 刘玉汇. 马铃薯ARM基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(6): 1451-1466.
[14] 曹松, 姚敏, 任睿, 贾元, 向星汝, 李文, 何昕, 刘忠松, 官春云, 钱论文, 熊兴华. 转录组结合区域关联分析挖掘油菜含油量积累的候选基因[J]. 作物学报, 2024, 50(5): 1136-1146.
[15] 李海芬, 鲁清, 刘浩, 温世杰, 王润风, 黄璐, 陈小平, 洪彦彬, 梁炫强. 花生赤霉素3-β-双加氧酶(AhGA3ox)基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(4): 932-943.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!