[1] Huang J, Ghosh R, Bankaitis V A. Sec14-like phosphatidylinositol transfer proteins and the biological landscape of phosphoinositide signaling in plants. Biochim Biophys Acta, 2016, 1861: 1352–1364.
[2] Novick P, Field C, Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell, 1980, 21: 205–215.
[3] Szolderits G, Hermetter A, Paltauf F, Daum G. Membrane properties modulate the activity of a phosphatidylinositol transfer protein from the yeast, Saccharomyces cerevisiae. Biochim Biophys Acta, 1989, 986: 301–309.
[4] Bankaitis V A, Aitken J R, Cleves A E, Dowhan W. An essential role for a phospholipid transfer protein in yeast Golgi function. Nature, 1990, 347: 561–562.
[5] Bankaitis V A, Mousley C J, Schaaf G. The Sec14 superfamily and mechanisms for crosstalk between lipid metabolism and lipid signaling. Trends Biochem Sci, 2010, 35: 150–160.
[6] Ren J H, Schaaf G, Bankaitis V A, Ortlund E A, Pathak M C. Crystallization and preliminary X-ray diffraction analysis of Sfh3, a member of the Sec14 protein superfamily. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2011, 67: 1239–1243.
[7] Aravind L, Iyer L M. The HARE-HTH and associated domains: novel modules in the coordination of epigenetic DNA and protein modifications. Cell Cycle, 2012, 11: 119–131.
[8] Anantharaman V, Aravind L. The GOLD domain, a novel protein module involved in Golgi function and secretion. Genome Biol, 2002, 3: research0023.
[9] Kapranov P, Routt S M, Bankaitis V A, de Bruijn F J, Szczyglowski K. Nodule-specific regulation of phosphatidylinositol transfer protein expression in Lotus japonicus. Plant Cell, 2001, 13: 1369–1382.
[10] Qin Y X, Zhang B, Wang Y N, Su R P. Characterization of SEC14 family in wheat and the function of TaSEC14-7B in salt stress tolerance. Plant Physiol Biochem, 2023, 202: 107926.
[11] Yang M L, Sakruaba Y, Ishikawa T, Ohtsuki N, Kawai-Yamada M, Yanagisawa S. Chloroplastic Sec14-like proteins modulate growth and phosphate deficiency responses in Arabidopsis and rice. Plant Physiol, 2023, 192: 3030–3048.
[12] Mao H Y, Wang W J, Su W H, Su Y C, Liu F, Li C N, Wang L, Zhang X, Xu L P, Que Y X. Genome-wide identification, phylogeny, and expression analysis of Sec14-like PITP gene family in sugarcane. Plant Cell Rep, 2019, 38: 637–655.
[13] 毛花英, 刘峰, 苏炜华, 黄宁, 凌辉, 张旭, 王文举, 李聪娜, 汤翰臣, 苏亚春, 等. 甘蔗磷脂酰肌醇转运蛋白基因ScSEC14响应干旱和盐胁迫. 作物学报, 2018, 44: 824–835.
Mao H Y, Liu F, Su W H, Huang N, Ling H, Zhang X, Wang W J, Li C N, Tang H C, Su Y C, et al. A sugarcane phosphatidylinositol transfer protein gene ScSEC14 responds to drought and salt stresses. Acta Agron Sin, 2018, 44: 824–835 (in Chinese with English abstract).
[14] 王晓宇, 李敏, 刘栩铭, 卜祥琪, 丁雪, 张继星. 蓖麻RcSEC14p基因的克隆及低温胁迫下的表达分析. 分子植物育种, 2019, 17: 4204–4209.
Wang X Y, Li M, Liu X M, Bu X Q, Ding X, Zhang J X. Cloning of RcSEC14p gene in Ricinus communis L. and expression analysis under cold stress. Mol Plant Breed, 2019, 17: 4204–4209 (in Chinese with English abstract).
[15] Kiba A, Nakano M, Vincent-Pope P, Takahashi H, Sawasaki T, Endo Y, Ohnishi K, Yoshioka H, Hikichi Y. A novel Sec14 phospholipid transfer protein from Nicotiana benthamiana is up-regulated in response to Ralstonia solanacearum infection, pathogen associated molecular patterns and effector molecules and involved in plant immunity. J Plant Physiol, 2012, 169: 1017–1022.
[16] Kiba A, Nakano M, Ohnishi K, Hikichi Y. The SEC14 phospholipid transfer protein regulates pathogen-associated molecular pattern-triggered immunity in Nicotiana benthamiana. Plant Physiol Biochem, 2018, 125: 212–218.
[17] Wang X Y, Shan X H, Xue C M, Wu Y, Su S Z, Li S P, Liu H K, Jiang Y, Zhang Y F, Yuan Y P. Isolation and functional characterization of a cold responsive phosphatidylinositol transfer-associated protein, ZmSEC14p, from maize (Zea may L.). Plant Cell Rep, 2016, 35: 1671–1686.
[18] 苏世超, 唐益苗, 徐磊, 王伟伟, 高世庆, 马锦绣, 孙辉, 王永波, 乔亚科, 赵昌平. 普通小麦TaSEC14p-5基因的克隆及表达分析. 农业生物技术学报, 2016, 24: 1129–1137.
Su S C, Tang Y M, Xu L, Wang W W, Gao S Q, Ma J X, Sun H, Wang Y B, Qiao Y K, Zhao C P. Cloning and expression analysis of TaSEC14p-5 gene from wheat (Triticum aestivum). J Agric Biotechnol, 2016, 24: 1129–1137 (in Chinese with English abstract).
[19] Burow M D, Simpson C E, Starr J L, Paterson A H. Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.) broadening the gene pool of a monophyletic polyploid species. Genetics, 2001, 159: 823–837.
[20] Settaluri V S, Kandala C V K, Puppala N, Sundaram J. Peanuts and their nutritional aspects: a review. Food Nutr Sci, 2012, 3: 1644–1650.
[21] Huang L, He H Y, Chen W G, Ren X P, Chen Y N, Zhou X J, Xia Y L, Wang X L, Jiang X G, Liao B S, et al. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2015, 128: 1103–1115.
[22] Huang R H, Li H Q, Gao C J, Yu W C, Zhang S C. Advances in omics research on peanut response to biotic stresses. Front Plant Sci, 2023, 14: 1101994.
[23] Patel J, Khandwal D, Choudhary B, Ardeshana D, Jha R K, Tanna B, Yadav S, Mishra A, Varshney R K, Siddique K H M. Differential physio-biochemical and metabolic responses of peanut (Arachis hypogaea L.) under multiple abiotic stress conditions. Int J Mol Sci, 2022, 23: 660.
[24] 王后苗, 廖伯寿. 农作物收获前黄曲霉毒素污染与控制措施. 作物学报, 2012, 38: 1–9.
Wang H M, Liao B S. Preharvest aflatoxin contamination in crops and its management. Acta Agron Sin, 2012, 38: 1–9 (in Chinese with English abstract).
[25] 王旭达, 张高华, 王鹤, 于树涛, 李怀梅, 王晓燕, 范琦. 锌指蛋白基因ZAT12提高转基因高油酸花生抗寒性. 分子植物育种, 2020, 18: 5351–5360.
Wang X D, Zhang G H, Wang H, Yu S T, Li H M, Wang X Y, Fan Q. Enhancing cold tolerance of transgenic high oleic peanut by zinc finger protein gene ZAT12. Mol Plant Breed, 2020, 18: 5351–5360 (in Chinese with English abstract).
[26] 王旭达, 于树涛, 张高华, 王鹤, 丰明, 都兴范, 范琦, 于国庆. 农杆菌介导花生转化体系的优化及转化AlDREB2A基因花生的耐旱性研究. 中国农业大学学报, 2018, 23(7): 26–35.
Wang X D, Yu S T, Zhang G H, Wang H, Feng M, Du X F, Fan Q, Yu G Q. Optimization of Agrobacterium tumerfaciens mediated peanut transformation system and studies on the drought tolerance of transgenic AIDREB2A peanut. J China Agric Univ, 2018, 23(7): 26–35 (in Chinese with English abstract).
[27] Kisyombe C T, Beute M K, Payne G A. Field evaluation of peanut genotypes for resistance to infection by Aspergillus parasiticus1, 2. Peanut Sci, 1985, 12: 12–17.
[28] Cui M J, Han S Y, Wang D, Haider M S, Guo J J, Zhao Q, Du P, Sun Z Q, Qi F Y, Zheng Z, et al. Gene co-expression network analysis of the comparative transcriptome identifies hub genes associated with resistance to Aspergillus flavus in cultivated peanut (Arachis hypogaea L.). Front Plant Sci, 2022, 13: 899177.
[29] Bjellqvist B, Hughes G J, Pasquali C, Paquet N, Ravier F, Sanchez J C, Frutiger S, Hochstrasser D. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis, 1993, 14: 1023–1031.
[30] Bjellqvist B, Basse B, Olsen E, Celis J E. Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophoresis, 1994, 15: 529–539.
[31] 代洪苇, 刘洁强, 张丽, 童华荣, 袁连玉. 茶树CsMCC1和CsMCC2基因的克隆及表达特征性分析. 作物学报, 2024, 50: 656–668.
Dai H W, Liu J Q, Zhang L, Tong H R, Yuan L Y. Cloning and relative expression pattern analysis of CsMCC1 and CsMCC2 in tea plant (Camellia sinensis). Acta Agron Sin, 2024, 50: 656–668 (in Chinese with English abstract).
[32] Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer F T, de Beer T A P, Rempfer C, Bordoli L, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 2018, 46: W296–W303.
[33] Nielsen H, Teufel F, Brunak S, von Heijne G. SignalP: the evolution of a web server. Methods Mol Biol, 2024, 2836: 331–367.
[34] Krogh A, Larsson B, von Heijne G, Sonnhammer E L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol, 2001, 305: 567–580.
[35] Bailey T L, Johnson J, Grant C E, Noble W S. The MEME suite. Nucleic Acids Res, 2015, 43: W39–W49.
[36] Cui M J, Haider M S, Chai P P, Guo J J, Du P, Li H Y, Dong W Z, Huang B Y, Zheng Z, Shi L, et al. Genome-wide identification and expression analysis of AP2/ERF transcription factor related to drought stress in cultivated peanut (Arachis hypogaea L.). Front Genet, 2021, 12: 750761.
[37] Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol, 2021, 38: 3022–3027.
[38] Yu C S, Chen Y C, Lu C H, Hwang J K. Prediction of protein subcellular localization. Proteins, 2006, 64: 643–651.
[39] Chou K C, Shen H B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One, 2010, 5: e11335.
[40] Huang J, Ghosh R, Tripathi A, Lönnfors M, Somerharju P, Bankaitis V A. Two-ligand priming mechanism for potentiated phosphoinositide synthesis is an evolutionarily conserved feature of Sec14-like phosphatidylinositol and phosphatidylcholine exchange proteins. Mol Biol Cell, 2016, 27: 2317–2330.
[41] Snoek G T. Phosphatidylinositol transfer proteins: emerging roles in cell proliferation, cell death and survival. IUBMB Life, 2004, 56: 467–475.
[42] Cockcroft S, Garner K. Potential role for phosphatidylinositol transfer protein (PITP) family in lipid transfer during phospholipase C signalling. Adv Biol Regul, 2013, 53: 280–291.
[43] Kaye Peterman T, Ohol Y M, McReynolds L J, Luna E J. Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides. Plant Physiol, 2004, 136: 3080–3094.
[44] Peterman T K, Sequeira A S, Samia J A, Lunde E E. Molecular cloning and characterization of patellin1, a novel sec14-related protein, from zucchini (Cucurbita pepo). J Plant Physiol, 2006, 163: 1150–1158.
[45] Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H, Xu Y, Allen N, Bibikova T N, Gilroy S, Bankaitis V A. A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J Cell Biol, 2005, 168: 801–812.
[46] Kiba A, Galis I, Hojo Y, Ohnishi K, Yoshioka H, Hikichi Y. SEC14 phospholipid transfer protein is involved in lipid signaling-mediated plant immune responses in Nicotiana benthamiana. PLoS One, 2014, 9: e98150.
[47] Montag K, Ivanov R, Bauer P. Role of SEC14-like phosphatidylinositol transfer proteins in membrane identity and dynamics. Front Plant Sci, 2023, 14: 1181031.
[48] 毛花英, 苏亚春, 阙友雄. 植物Sec14-like磷脂酰肌醇转运蛋白: 变化的结构和多样的功能. 农业生物技术学报, 2019, 27: 348–360.
Mao H Y, Su Y C, Que Y X. Plant Sec14-1ike phosphatidylinositol transfer proteins: diverse structures and multi-functions. J Agric Biotechnol, 2019, 27: 348–360 (in Chinese with English abstract).
[49] Maiti S, Patro S, Pal A, Dey N. Identification of a novel salicylic acid inducible endogenous plant promoter regulating expression of CYR1 a CC-NB-LRR type candidate disease resistance gene in Vigna mungo. Plant Cell Tissue Organ Cult, 2015, 120: 489–505.
[50] Luo M, Dang P, Guo B Z, He G, Holbrook C C, Bausher M G, Lee R D. Generation of expressed sequence tags (ESTs) for gene discovery and marker development in cultivated peanut. Crop Sci, 2005, 45: 346–353.
[51] Guo B Z, Chen X P, Dang P, Scully B T, Liang X Q, Corley Holbrook C, Yu J J, Culbreath A K. Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection. BMC Dev Biol, 2008, 8: 12.
[52] Gelli M, Duo Y C, Konda A R, Zhang C, Holding D, Dweikat I. Identification of differentially expressed genes between Sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. BMC Genomics, 2014, 15: 179.
[53] 陈文玲, 张晴晴, 唐韶华, 龚伟, 洪月云. 甘油-3-磷酸酰基转移酶在植物脂质代谢、生长及逆境反应中的作用. 植物生理学报, 2018, 54: 725–735.
Chen W L, Zhang Q Q, Tang S H, Gong W, Hong Y Y. Glycerol-3-phosphate acyltransferase in lipid metabolism, growth and response to stresses in plants. Plant Physiol J, 2018, 54: 725–735 (in Chinese with English abstract).
|