欢迎访问作物学报,今天是

作物学报 ›› 2006, Vol. 32 ›› Issue (10): 1444-1452.

• 研究论文 • 上一篇    下一篇

利用大麦基因芯片筛选簇毛麦抗白粉病相关基因及其抗病机制的初步研究

曹爱忠1;王秀娥1,*;陈雅平1;李巧1;陈佩度1,*;邹晓文2   

  1. 1南京农业大学作物遗传与种质创新国家重点实验室,江苏南京 210095;2上海国家生物芯片工程研究中心,上海 201203
  • 收稿日期:2005-11-04 修回日期:1900-01-01 出版日期:2006-10-12 网络出版日期:2006-10-12
  • 通讯作者: 陈佩度

Screening Resistant-Related Genes to Powdery Mildew in Haynaldia villosa Using Barley Genechip and Studying Its Mechanism of Resistance

CAO Ai-Zhong1,WANG Xiu-E1 *,CHEN Ya-Ping1,LI Qiao1,CHEN Pei-Du1 *,ZOU Xiao-Wen2   

  1. 1National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu; 2National Engineering Center for Biochip at Shanghai, Shanghai 201203, China
  • Received:2005-11-04 Revised:1900-01-01 Published:2006-10-12 Published online:2006-10-12
  • Contact: CHEN Pei-Du

摘要:

利用大麦基因芯片筛选差异表达基因并结合RT-PCR分析技术,对簇毛麦的抗白粉病机制进行了初步研究。基因芯片杂交试验获得了抗病簇毛麦非诱导叶片、抗病簇毛麦和感病突变体经白粉菌(Blumeria graminis f. sp. tritici)诱导叶片的基因表达谱。抗病簇毛麦经白粉菌诱导前后的表达谱及RT-PCR分析结果表明,抗病簇毛麦中乙烯和水杨酸信号途径的部分基因被白粉菌诱导增强表达,参与了白粉病的抗性过程。另外,通过比较诱导的抗病簇毛麦与诱导的簇毛麦感病突变体的表达谱并结合RT-PCR分析,发现感病突变体中乙烯和茉莉酸途径的部分基因被白粉菌诱导表达参与防卫反应,未观察到水杨酸信号途径参与防卫反应的证据。同时对抗、感簇毛麦经白粉菌诱导不同时间的叶片进行了内源水杨酸含量的测定,结果表明抗病簇毛麦经白粉菌诱导后水杨酸含量明显上升,而感病突变体中水杨酸含量始终处于较低水平。由于乙烯信号途径是抗、感簇毛麦中共同的信号途径,而水杨酸途径只在抗病簇毛麦中参与抗病反应,所以在簇毛麦的抗病过程中,水杨酸途径是一种最有效的信号传导途径。还筛选出一批与簇毛麦抗白粉病相关的基因,包括病程相关蛋白基因、防卫反应基因、转录因子、信号传导因子和抗病基因类似物等。

关键词: 大麦基因芯片, 簇毛麦, 信号传导, 防卫反应, 白粉病

Abstract:

The technologies of genechip microarray combined with RT-PCR were used to investigate the resistance mechanism of Haynaldia villosa to the powdery mildew. The transcriptome of uninoculated resistant H. villosa,wildtype resistant H. villosa and susceptible mutant inoculated with Blumeria graminis f. sp. tritici were obtained using barley genechip microarray. RT-PCR and comparison of the transcriptome in inoculated and uninoculated resistant H. villosa indicated that the genes involved in the salicylic acid and ethylene signal transduction pathways were upregulated by B. graminis inoculation in the resistant H. villosa. RT-PCR and transcriptome comparison in the inoculated wildtype resistant and susceptible mutant showed that the genes involved in the ethylene and jasmonic acid signal transduction pathways were upregulated by B. graminis inoculation in the susceptible mutant H. villosa, while the salicylic acid signal transduction pathway was not participated in the process. The endogenous SA concentration of wildtype and susceptible mutant H. villosa inoculated for different hours were measured. SA concentration in the resistant H. villosa increased dramatically after inoculated with B. graminis, while that in the susceptible mutant remained at very low level. Since genes in the ethylene signal pathway were induced in the resistant and mutant H. villosa and genes in the salicylic acid signal transduction pathway were induced only in the resistant H. villosa, the salicylic acid signal transduction pathway might be the major pathway involved in H. villosa resistance to the powdery mildew. Genes involved in the resistance to powdery mildew in the H. villosa were also identified, including pathogenesis related protein genes, defense genes, transcription factors, signal transduction components and resistance gene analogs.

Key words: Barley genechip, Haynaldia villosa, Signal transduction pathway, Defense response, Powdery mildew

中图分类号: 

  • S512
[1] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[2] 李庆成,黄磊,李亚洲,范超兰,谢蝶,赵来宾,张舒洁,陈雪姣,甯顺腙,袁中伟,张连全,刘登才,郝明. 小麦-黑麦6RS/6AL易位染色体的遗传稳定性及其在配子中的传递[J]. 作物学报, 2020, 46(4): 513-519.
[3] 陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位[J]. 作物学报, 2019, 45(10): 1503-1510.
[4] 吴秋红,陈永兴,李丹,王振忠,张艳,袁成国,王西成,赵虹,曹廷杰,刘志勇. 利用SNP芯片和BSA分析规模化定位小麦抗白粉病基因[J]. 作物学报, 2018, 44(01): 1-14.
[5] 张晓琼,王晓雯,田维江,张孝波,孙莹,李杨羊,谢佳,何光华,桑贤春. LAZY1通过BR途径调控水稻叶夹角的发育[J]. 作物学报, 2017, 43(12): 1767-1773.
[6] 刘畅,李仕金,王轲,叶兴国,林志珊. 簇毛麦6VS特异转录序列P21461P33259的获得及其分子标记在鉴定小麦-簇毛麦抗白粉病育种材料中的应用[J]. 作物学报, 2017, 43(07): 983-992.
[7] 付必胜,刘颖,张巧凤,吴小有,高海东,蔡士宾,戴廷波,吴纪中. 与小麦抗白粉病基因Pm48紧密连锁分子标记的开发[J]. 作物学报, 2017, 43(02): 307-312.
[8] 王海燕,肖进,袁春霞,徐涛,于春艳,孙昊杰,陈佩度,王秀娥*. 携带抗白粉病基因Pm21的小麦–簇毛麦小片段易位染色体在不同小麦背景中的传递率及遗传稳定性[J]. 作物学报, 2016, 42(03): 361-367.
[9] 刘金栋,杨恩年,肖永贵,陈新民,伍玲,白斌,李在峰,Garry M. ROSEWARNE,夏先春,何中虎. 兼抗型成株抗性小麦品系的培育、鉴定与分子检测[J]. 作物学报, 2015, 41(10): 1472-1480.
[10] 曹廷杰,陈永兴,李丹,张艳,王西成,赵虹,刘志勇. 河南小麦新育成品种(系)白粉病抗性鉴定与分子标记检测[J]. 作物学报, 2015, 41(08): 1172-1182.
[11] 管昌英,郭军,薛凤博,张广旭,王宏伟,李安飞,孔令让. 普通小麦DH155抗白粉病基因的分子作图及应用分子标记辅助选择将其转移[J]. 作物学报, 2015, 41(08): 1183-1190.
[12] 孙喜营,崔磊,孙蕾,孙艳玲,邱丹,邹景伟,武小菲,王晓鸣,李洪杰. 抗禾谷孢囊线虫小麦新种质H3714和H4058的培育与鉴定[J]. 作物学报, 2015, 41(06): 872-880.
[13] 王仲怡,付海宁,孙素丽,段灿星,武小菲,杨晓明,朱振东. 豌豆品系X9002抗白粉病基因鉴定[J]. 作物学报, 2015, 41(04): 515-523.
[14] 姜延涛,许韬,段霞瑜*,周益林. 品种混种控制小麦白粉病及其对小麦产量和蛋白质含量的影响[J]. 作物学报, 2015, 41(02): 276-285.
[15] 朱利泉,周燕. 甘蓝自交不亲和性信号传导元件与传导过程[J]. 作物学报, 2015, 41(01): 1-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!