欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (12): 2134-2142.doi: 10.3724/SP.J.1006.2008.02134

• 耕作栽培·生理生化 • 上一篇    下一篇

减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因

曹云英1,2;段骅1;杨立年1;王志琴1;周少川3;杨建昌1,*   

  1. 1 扬州大学江苏省作物遗传生理重点实验室,江苏扬州225009;2 南通大学生命科学学院,江苏南通226007;3 广东省农业科学院水稻研究所,广东广州510640
  • 收稿日期:2008-05-09 修回日期:2008-07-24 出版日期:2008-12-12 网络出版日期:2008-10-10
  • 通讯作者: 杨建昌
  • 作者简介:曹云英(1970-),女,江苏姜堰人,副教授,博士研究生,从事作物生理生态的研究
  • 基金资助:

    国家自然科学基金项目(30671225,30771274);江苏省自然科学基金项目(BK2006069);国家科技攻关计划项目(2006BAD02A13-3-2)

Effect of Heat-Stress during Meiosis on Grain Yield of Rice Cultivars Differing in Heat-Tolerance and Its Physiological Mechanism

CAO Yun-Ying12,DUAN Hua1,YANG Li-Nian1,WANG Zhi-Qing1,YANG Jian-Chang1*   

  1. 1 Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, Jiangsu; 2 College of Life Sciences, Nantong University, Nantong 226007, Jiangsu; 3 Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
  • Received:2008-05-09 Revised:2008-07-24 Published:2008-12-12 Published online:2008-10-10
  • Contact: YANG Jian-Chang

摘要:

以两个耐热性不同的籼稻品种为材料,在减数分裂期进行高温(白天温度>35℃)处理,以同期自然温度(白天温度<33℃)为对照,研究减数分裂期高温对产量的影响及其生理机制。结果表明,高温处理与对照相比,显著降低了热敏感品种双桂1号的花药开裂率及花粉育性,对耐热品种黄华占影响较小;明显降低了每穗颖花数、结实率和粒重,从而使产量显著下降,其中耐热品种下降幅度小于热敏感品种;热敏感品种粒宽显著缩短,长宽比显著增大,而对耐热型品种影响不大;明显降低了水稻的根系活力和幼穗的核糖核酸(RNA)含量,显著增加了叶片丙二醛(MDA)含量和幼穗的乙烯释放速率,热敏感品种变化幅度大于耐热品种;显著增加了耐热品种叶片的抗氧化酶活性,对热敏感品种无显著影响。总之,根系活力和抗氧化保护系统能力强、RNA含量高、MDA含量低及乙烯合成少是耐热性品种在高温胁迫下保持较高产量的重要生理原因。

关键词: 水稻, 减数分裂期, 高温, 耐热性, 产量, 生理机制

Abstract:

Meiosis is the most stress-sensitive period in reproduction of rice plants. However, little is known how heat-stress during meiosis affects grain yield of rice. This study investigated the development of anthers and pollens, yield components, and some physiological parameters under the heat-stress during meiosis. Two indica rice cultivars with different heat-tolerance, Shuanggui 1 (heat-sensitive) and Huanghuazhan (heat-tolerant), were pot-grown and subjected to treatments of heat-stress (the mean temperature during the day >35℃) and natural temperature (the mean temperature during the day <33℃, CK). The results showed that the heat-stress significantly reduced anther dehiscence and pollen fertility rate of Shuanggui 1, while it much less affected those of Huanghuazhan. The number of spikelets per panicle, seed-setting rate, and 1000-grain weight were significantly decreased under the heat-stress for both cultivars, leading to a significant reduction in grain yield, with a more reduction in Shuanggui 1 than in Huanghuazhan. The heat-stress treatment significantly decreased grain width of Shuanggui 1 and obviously increased ratio of length to width of grain, whereas it less affected those of Huanghuazhan. The heat-stress significantly reduced root oxidation activity and ribonucleic acid (RNA) content of young panicles, and significantly increased malondialdehyde (MDA) content of leaves and ethylene evolution rate of young panicles, and the extent of the decrease or increase was more in Shuanggui 1 than in Huanghuazhan. The heat-stress treatment significantly increased activities of peroxidase, superoxide dismutase and catalase of leaves in Huanghuazhan, while it much less affected those in Shuanggui 1. The results indicate that stronger root activity and antioxidative defense system, greater RNA content, and less ethylene synthesis and lower MDA content in rice plants during meiosis would be physiological mechanisms in maintaining a higher grain yield for a heat-tolerant cultivar under high-temperature stress.

Key words: Rice, Meiosis, High temperature, Heat-tolerance, Grain yield, Physiological mechanism

[1]Wang S-W(王绍武), Ye J-L(叶瑾琳). Analysis of global warming during the last one hundred years. J Atmos Sin (大气科学), 1995, 19(5): 545-553 (in Chinese with English ab-stract)
[2]IPCC. Climate Change 2001—the Scientific Basis. Cam-bridge, UK: Cambridge University, 2001. pp 101-125
[3]Zhang G-L(张桂莲), Chen L-Y(陈立云), Lei D-Y(雷东阳), Zhang S-T(张顺堂). Progresses in research on heat tolerance in rice. Hybrid Rice (杂交水稻), 2005, 20(1): 1-5 (in Chinese with English abstract)
[4]Yang H-C(杨惠成), Huang Z-Q(黄仲青), Jiang Z-X(蒋之埙), Wang X-W(王相文). Investigation and study of flowering harm to high temperature on early and mid-season rice in Jiang-Huai area in 2003. J Anhui Agric Sci (安徽农业科学), 2004, 32(4): 607-609 (in Chinese)
[5]Liu S-D(刘士达), Jiang X-Z(江相智), Jin G-Z(金官洙), Li C-R(李长荣), Wang S-R(王思睿), Jin J-D(金京德). Effect of low temperature during meiosis and flowering stage in dif-ferent cultivars. J Jilin Agric Sci (吉林农业科学), 1985, (3): 40-45 (in Chinese)
[6]Wang Y-Q(王育启). Low temperature injury of rice during meiosis period. Shanghai Agric Sci & Tech (上海农业科技), 1980, (4): 5-7 (in Chinese)
[7]Matsui T, Omasa K, Horie T. The difference in sterility duo to high temperature during the flowering period among japonica rice varieties. Plant Prod Sci, 2001, 4: 90-93
[8]Moritani K(森谷国男), Xu Z-J(徐正进). Research overview of rice genetic breeding on resistance to high temperature stress. Hybrid Rice (杂交水稻), 1992, 33(1): 47-48 (in Chinese)
[9]Meng Y-L(孟亚利), Zhou Z-G(周治国). Relationship be-tween rice grain quality and temperature during seed setting period. Chin J Rice Sci (中国水稻科学), 1997, 11(1): 51-54(in Chinese with English abstract)
[10]Cheng F-M(程方民), Zhang S-W(张嵩午). The dynamic change of rice quality during the grain in filling stage and ef-fects of temperature upon it. J Zhejiang Univ (Agric & Life Sci) (浙江大学学报·农业与生命科学版), 1999, 25(4): 347-350 (in Chinese with English abstract)
[11]Ding Y(丁颖). Rice Cultivation in China (中国水稻栽培学). Beijing: Agriculture Press, 1961. pp 160-165 (in Chinese)
[12]Matsui T, Omasa K, Horie T. High temperature at flowering inhibits swelling of pollen grains, a driving force of thecate dehiscence in rice (Oryza sativa L.). Plant Prod Sci, 2000, 3: 430-434
[13]Supervising Department of Quality and Technology of China (国家质量技术监督局). The National Standard of the People's Republic of China (中华人民共和国国家标准). Good Quality of Rice Grains (优质稻谷). GB/T17891-1999, 1999. Beijing: Standards Press of China (in Chinese)
[14]Yang J-C(杨建昌), Wang Z-Q(王志琴), Zhu Q-S(朱庆森). Effect of nitrogen nutrient on rice yield and its physiological mechanism under different status of soil moisture. Sci Agric Sin (中国农业科学), 1996, 29(4): 58-66 (in Chinese with English abstract)
[15]Zhu Z-P(朱治平), Shen R-J(沈瑞娟), Tang X-H(唐锡华). Research of development biology in plant embryos. J Plant Physiol (植物生理学报), 1980, 6(2): 141-146 (in Chinese with English abstract)
[16]Yang J, Zhang J, Wang Z, Liu K, Wang P. Post-anthesis de-velopment of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. J Exp Bot, 2006, 57: 149-160
[17]Zhang X-Z(张宪政). Methods for Physiology Research in Crops (作物生理研究法). Beijing: Agriculture Press, 1992. pp 140–142, 197-198 (in Chinese)
[18]Berry J, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol, 1980, 31: 491-543
[19]Zhao S-J(赵世杰), Xu C-C(许长成), Zou Q(邹琦), Meng Q-W(孟庆伟). Improvements of method for measurement of malondialdehyde in plant tissues. Plant Physiol Commun (植物生理学通讯), 1994, 30(3): 207-210 (in Chinese)
[20]Li W-B(李文彬), Wang H(王贺), Zhang F-S(张福锁). Effects of silicon on anther dehiscence and pollen shedding in rice under high temperature stress. Acta Agron Sin (作物学报), 2005, 31(1): 134-136 (in Chinese with English abstract)
[21]Shanghai Institute of Plant Physiology (上海植物生理研究所). Effect and prevention of high temperature on flowering in early rice: II. Sensitive phase of high temperature on flow-ering in early rice. Acta Bot Sin (植物学报), 1977, 19(2): 126 (in Chinese with English abstract)
[22]Shu X-S(舒孝顺), Chen L-B(陈良碧). The changes of total RNA content in young ears and leave for thermo-sensitive genic male sterile indica rice during fertility-sensitive periods. Plant Physiol Commun (植物生理学通讯), 1999, 35(2): 108-110 (in Chinese)
[23]Zhang G-L(张桂莲), Chen L-Y(陈立云), Zhang S-T(张顺堂), Xiao Y-H(肖应辉), He Z-Z(贺治洲), Lei D-Y(雷东阳). Ef-fect of high temperature stress on protective enzyme activities and membrane permeability of flag leaf in rice. Acta Agron Sin (作物学报), 2006, 32(9): 1306-1310 (in Chinese with English abstract)
[24]Zhu X-M(朱雪梅), Ke Y-P(柯永培), Shao J-R(邵继荣), Lin L-J(林立金), Yang Y-X(杨远祥). Effects of high temperature stress on activated oxygen metabolism of the leaves of the heavy panicle type of medium India hybrid rice. Seed (种子), 2005, 24(3): 25-27 (in Chinese with English abstract)
[25]Naik P K, Mohapatra P K. Ethylene inhibitors promote male gametophyte survival in rice. Plant Growth Regul, 1999, 28: 29-39
[26]Tian C-E(田长恩), Liang C-Y(梁承邺), Huang Y-W(黄毓文), Liu H-X(刘鸿先). Relationship between ethylene and the occurrence of cytoplasmic male sterility in Oryza sativa L. Acta Agron Sin (作物学报), 1999, 25(1): 116-119 (in Chinese with English abstract)
[27]Keeling P L, Bacon P J, Holt D C. Elevated temperature re-duces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta, 1993, 191: 342-348
[28]Jin Z-X(金正勋), Yang J(杨静), Qian C-R(钱春荣), Liu H-Y(刘海英), Jin X-Y(金学泳), Qiu T-Q(秋太权). Effects of temperature during grain filling period on activities of key enzymes for starch synthesis and rice grain quality. Chin J Rice Sci (中国水稻科学), 2005, 19(4): 377-380 (in Chinese with English abstract)
[29]Liu K(刘凯), Ye Y-X(叶玉秀), Tang C(唐成), Wang Z-Q(王志琴), Yang J-C(杨建昌). Responses of ethylene and ACC in rice grains to soil moisture and in relation with grain filling. Acta Agron Sin (作物学报), 2007, 33(4): 539-546 (in Chi-nese with English abstract)
[30]Yakimova E T, Kapchina-Toteva V M, Laarhoven L J, Harren F M, Woltering E J. Involvement of ethylene and lipid sig-naling in cadmium-induced programmed cell death in tomato suspension cells. Plant Physiol Biochem, 2006, 44: 581-589
[31]Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H, Kangasjarvi J. Ozone-sensitive Arabidop-sis rcdl mutant reveals opposite roles for ethylene and jas-monate signaling pathways in regulating superoxide- dependent cell death. Plant Cell, 2000, 12: 1849-1862
[32]Tambussi E A, Bartoli C G, Beltrano J, Guiamet J J, Araus J L. Oxidative damage to thylakoid proteins in water stressed leaves of wheat (Triticum aestivum). Physiol Plant, 2000, 108: 398-404
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[6] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[7] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[8] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[9] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[10] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[11] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[12] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[13] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[14] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[15] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!