欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (1): 185-189.doi: 10.3724/SP.J.1006.2009.00185

• 研究简报 • 上一篇    

甜高粱蔗糖合酶表达与蔗糖积累的相关分析

杨明1,3;刘丽娟1;李莉云1;王博1;常金华2;刘国振1,*   

  1. 1河北农业大学生命科学学院;2河北农业大学农学院,河北保定071000;3华北制药生物燃料研究所,河北石家庄050015
  • 收稿日期:2008-05-12 修回日期:2008-07-16 出版日期:2009-01-12 网络出版日期:2008-11-18
  • 通讯作者: 刘国振
  • 基金资助:

    本研究由河北农业大学人才基金项目资助

Correlation Analysis between Sucrose Synthase Expression and Sucrose Accumulation in Sweet Sorghum(Sorghum bicolor L.Moench)

YANG Ming1,3,LIU Li-Juan1,LI Li-Yun1,WANG Bo1,CHANG Jin-Hua2,Liu Guo-Zhen1,*   

  1. 1College of Life Sciences,2College of Agronomy,Agricultural University of Hebei,Baoding 071000,China,3 North China Pharmaceutical Group Corporation,Shijiazhuang050015,China
  • Received:2008-05-12 Revised:2008-07-16 Published:2009-01-12 Published online:2008-11-18
  • Contact: Liu Guo-Zhen

摘要:

以甜高粱为原料生产酒精是一种有潜力的生物能源途径,了解甜高粱蔗糖积累机理对生物能源开发具有重要意义。以两个甜高粱品种为材料,利用Western blotting技术检测高粱叶片和茎秆中蔗糖合酶(Sucrose Synthase, SS)的表达,分析其与蔗糖积累的相关性。结果表明,甜高粱叶片和茎秆中的SS蛋白质表达量在发育早期(拔节期、抽穗期)较低,发育后期(开花期、灌浆期和腊熟期)明显升高,在开花期最高。同2个普通高粱品种相比,在发育后期2个甜高粱品种叶片和茎秆中SS的表达明显增加,且与茎秆中的蔗糖积累相关,推测这是甜高粱与普通高粱蔗糖含量差异的重要原因。试验结果为选育甜高粱品种和提高茎秆蔗糖含量提供了一条可能的策略。

关键词: 甜高粱, 普通高粱, 蔗糖合成酶, Western blotting

Abstract:

Alcohol production by using sweet sorghum (Sorghum bicolor L. Moench) might be a potential way to provide bio-energy in the future, so it is necessary to learn about the mechanism of sucrose accumulation in sweet sorghum for exploitation of bio-energy. The experiment was conducted using two sweet sorghum varieties, to detect expression of sucrose synthase (SS) in leaves and stems by using Western blotting, and analyse the correlation between SS expression and sucrose accumulation. The results indicated that the SS expression in sweet sorghum leaves and stems was lower at early growth stages (jointing and heading stage), increased dramatically at late growth stages (flowering, grain filling and dough stage), and reached the highest level at flowering stage. Compared with two common sorghum varieties, SS expression in leaves and stems in two sweet sorghum varieties increased significantly at late growth stages and correlated with sucrose content in stems. Expression of SS might play an important role in the difference of sucrose content between sweet and common sorghums. The results proposed a strategy for screening sweet sorghum cultivars and enhancing sucrose content of stems in breeding program.

Key words: Sweet sorghum, Common sorghum, Sucrose synthase, Western blotting

[1] Gnansounou E, Dauriat A, Wyman C E. Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. Bioresour Technol, 2005, 96: 985–1002
[2] Zhang M-F(张明方), Li Z-L(李志凌). Sucrose-metabolizing enzymes in higher plants. Plant Physiol Commun (植物生理学通讯), 2002, 38(3): 289–295 (in Chinese with English abstract)
[3] Tanase K, Yamaki S. Purification and characterization of two sucrose synthase isoforms from Japanese pear fruit. Plant Cell Physiol, 2000, 41: 408–414
[4] Salanoubat M, Belliard G. Molecular cloning and sequencing of sucrose synthase cDNA from potato (Solanum tuberosum L.): preliminary characterization of sucrose synthase mRNA distribution. Gene, 1987, 60: 47–56
[5] McCarty D R, Shaw J R, Hannah L C. The cloning, genetic mapping, and expression of the constitutive sucrose synthase locus of maize. Proc Natl Acad Sci USA, 1986, 83: 9099–9103
[6] Hesse H, Willmitzer L. Expression analysis of a sucrose synthase gene from sugar beet (Beta vulgaris L.). Plant Mol Biol, 1996, 30: 863–872
[7] Sebkova V, Unger C, Hardegger M. Biochemical, physiological, and molecular characterization of sucrose synthase from Daucuscarota. Plant Physiol, 1995, 108: 75–83
[8] Lingle S E, Dyer J M. Cloning and expression of sucrose synthase-1 cDNA from sugarcane. J Plant Physiol, 2001, 158: 129–131
[9] Moriguchi T, Abe K, Yamaki S. Level and role of sucrose synthase, sucrose-phosphate synthase and acid invertase in sucrose accumulation in fruit of Asian pear. J Am Soc Hort Scie, 1992, 117: 274–278
[10] Batta S K, Singh R. Sucroae metabolism in sugarcane growth under varying climatic condition: synthsis and storage of sucrose in relation to the activities of sucrose synthase, sucrose-phosphate synthase and acid invertase. Phytochemistry, 1986, 25: 2431–2437
[11] Moriguchi T, Sanada T, Yamaki S. Seasonal fluctuation of some enzymes relating to sucrose and sorbitol metabolism in peach fruit. J Am Soc Hort Sci, 1990, 115: 278–281
[12] Hu C-M(胡春梅), Wang X-F(王秀峰), Ji J-J(季俊杰), Zhu Y-L(朱月林). Changes in carbohydrate contents during guar plant development. Acta Agron Sin (作物学报), 2007, 33(11): 1869–1873(in Chinese with English abstract)
[13] Qi H-Y(齐红岩), Li T-L(李天来), Zhang J(张洁), Liu H-T(刘海涛). Relation ship between carbohydrate change and related enzymes activities during tomato fruit development. Acta Hort Sin (园艺学报), 2006, 33(2): 294–299(in Chinese with English abstract)
[14] Botha F C, Black K G. Sucrose phosphate synthase and sucrose synthase activity during maturation of internodal tissue in sugarcane. Australia J Plant Physiol, 2000, 27: 81–85
[15] Wolfgang E S, Johann M R, Frederik C B. Protein-level expression and localization of sucrose synthase in the sugarcane culm. Physiol Plant, 2004, 121: 187–195
[16] Kaur K, Gupta A K, Kaur N. Effect of water deficit on carbohydrate status and enzymes of carbohydrate metabolism in seedlings of wheat cultivars. Indian J Biochem Biophys, 2007, 44: 223–230
[17] Geromel C, Ferreira L P, Guerreiro S M C, Cavalari A A, Pot D, Pereira L F P, Leroy T, Vieira L G E, Mazzafera P, Marraccini P. Biochemical and genomic analysis of sucrose metabolism during coffee (Coffea arabica) fruit development. J Exp Bot, 2006, 57: 3243–3258
[18] Privat I, Foucrier S, Prins A, Epalle T, Eychenne M, Kandalaft L, Caillet V, Lin C W, Tanksley S, Foyer C Mccarthy J. Differential regulation of grain sucrose accumulation and metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta) revealed through gene expression and enzyme activity analysis. New Phytol, 2008, 178(4): 781–797
[19] Bhatia S, Singh R. Interconversion of free sugars in relation to activities of enzymes catalyzing synthesis and cleavage of sucrose in growing stem tissues of sorghum. Indian J Exp Biol, 2001, 39: 1035–1040
[20] Yang M(杨明), Liu L-J(刘丽娟), Li L-Y(李莉云), Wang B(王博), Chang J-H(常金华), Liu G-Z(刘国振). The Correlation analysis of sugar accumulation and SPS expression in sweet sorghum (Sorghum bicolor L. Moench) Stems. Sci Agric Sin (中国农业科学), 2008(in press)(in Chinese with English abstract)
[21] Li D-J(黎大爵), Liao F-S(廖馥荪). Sweet Sorghum and Its Utilization (甜高粱及其利用). Beijing: Science Press, 1992. pp 144–145(in Chinese)
[22] Zhang Y-J(张意静). Food Analysis Technology (食品分析技术). Beijing: China Light Industry Press, 2001. pp 138–151(in Chinese)
[23] Zhang C-G(张成岗), Yuan S-J(袁守军), Deng M-Y(邓美玉), Li L(李林), Tang Z-M(汤仲明), He F-C(贺福初). A simple method for semi-quantitative image analysis of dot and band signals. Chin J Stereol Image Anal (中国体视学与图像分析), 2001, 6(3): 167–170(in Chinese with English abstract)
[24] Liu P(刘鹏), Hu C-H(胡昌浩), Dong S-T(董树亭), Wang K-J(王空军), Zhang J-W(张吉旺), Zhang B-R(张保仁). Comparison of enzymes activity associated with sucrose metabolism in the developing grains between sweet corn and normal corn. Sic Agric Sin (中国农业科学), 2005, 38(1): 52–58(in Chinese with English abstract)
[25] Klotza K L, Haagenson D M. Wounding, anoxia and cold induce sugarbeet sucrose synthase transcriptional changes that are unrelated to protein expression and activity. J Plant Physiol, 2008, 165: 423–434
[26] Martin T, Frommer W B, Salanoubat M, Willmitzer L. Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs. Plant J, 1993, 4: 367–377
[27] Godt D, Roitsch T. The developmental and organ specific expression of sucrose cleaving enzymes in sugar beet suggests a transition between apoplasmic and symplasmic phloem unloading in the tap roots. Plant Physiol Biochem, 2006, 44: 656–665
[28] Farrar J F. Sink strength: what is it and how do we measure it? Plant Cell Environ, 1993, 16: 1013–1046
[29] Li W-Y(李文阳), Yin Y-P(尹燕枰), Yan S-H(闫素辉), Dai Z-M(戴忠民), Li Y(李勇), Liang T-B(梁太波), Geng Q-H(耿庆辉), Wang Z-L(王振林). Effect of shading after anthesis on starch accumulation and activities of the related enzymes in wheat grain. Acta Agron Sin (作物学报), 2008, 34(4): 632–640(in Chinese with English abstract)
[30] Song J(宋瑾), Fan P-G(范培格), Wu B-H(吴本宏), Li S-H(李绍华). Changes in soluble sugars and activities of related metabolic enzymes in grape berries during ripening and delayed harvest. Acta Hort Sin (园艺学报), 2007, 34(4): 823–828(in Chinese with English abstract)
[1] 朱广龙,宋成钰,于林林,陈许兵,智文芳,刘家玮,焦秀荣,周桂生. 外源生长调节物质对甜高粱种子萌发过程中盐分胁迫的缓解效应及其生理机制[J]. 作物学报, 2018, 44(11): 1713-1724.
[2] 唐朝臣,罗峰,李欣禹,裴忠有,高建明,孙守钧*. 甜高粱产量及品质相关性状对环境因子反应度分析[J]. 作物学报, 2015, 41(10): 1612-1618.
[3] 马强,顿宝庆,奚亚军,王智,陈朝儒,路明,李桂英. 碱处理对甜高粱秸秆渣组成结构及酶解糖化效果的影响[J]. 作物学报, 2014, 40(09): 1604-1611.
[4] 陈维维,再吐尼古丽?库尔班,涂振东,叶凯. 不同种植密度对甜高粱糖分积累及SS、SPS活性的影响[J]. 作物学报, 2013, 39(08): 1507-1513.
[5] 王彩娟, 李志强, 王晓琳, 姜闯道, 唐宇丹, 谷卫彬, 石雷. 室外盆栽条件下盐胁迫对甜高粱光系统II活性的影响[J]. 作物学报, 2011, 37(11): 2085-2093.
[6] 王黎明, 焦少杰, 姜艳喜, 严洪冬, 苏德峰, 孙广全. 142份甜高粱品种的分子身份证构建[J]. 作物学报, 2011, 37(11): 1975-1983.
[7] 吴秋平, 王永军, 姜文顺, 张吉旺, 刘鹏, 董树亭, 王空军. 甜高粱分蘖去留与糖产量及氮素利用的比较分析[J]. 作物学报, 2010, 36(11): 1950-1958.
[8] 刘娟;宋宪亮;朱玉庆;李学刚;陈二影;孙学振. 高品质陆地棉蔗糖代谢关键酶活性对纤维品质形成的影响[J]. 作物学报, 2008, 34(10): 1781-1787.
[9] 胡春梅;王秀峰;季俊杰;朱月林. 瓜尔豆发育过程中碳水化合物含量的变化[J]. 作物学报, 2007, 33(11): 1869-1873.
[10] 葛江丽;石雷;谷卫彬;唐宇丹;张金政;姜闯道;任大明. 盐胁迫条件下甜高粱幼苗的光合特性及光系统Ⅱ功能调节[J]. 作物学报, 2007, 33(08): 1272-1278.
[11] 王维; 蔡一霞;蔡昆争;张建华;杨建昌;朱庆森. 水分胁迫对贪青水稻籽粒充实及其淀粉合成关键酶活性的影响[J]. 作物学报, 2006, 32(07): 972-979.
[12] 李天; 大杉立; 山岸徹; 佐佐木治人. 灌浆结实期弱光对水稻籽粒蔗糖及其降解酶活性的影响[J]. 作物学报, 2006, 32(06): 943-945.
[13] 赵辉;戴廷波;荆奇;姜东;曹卫星;陆玮;田孝威. 灌浆期高温对两种品质类型小麦品种籽粒淀粉合成关键酶活性的影响[J]. 作物学报, 2006, 32(03): 423-429.
[14] 王志琴;叶玉秀;杨建昌;袁莉民;王学明;朱庆森. 水稻灌浆期籽粒中蔗糖合成酶活性的变化与调节[J]. 作物学报, 2004, 30(07): 634-643.
[15] 杨建昌;王志琴;陈新红;赵步洪;王泽港;朱庆森. 旱种水稻结实期茎中碳同化物的运转及其生理机制[J]. 作物学报, 2004, 30(02): 108-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!