欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (11): 2085-2093.doi: 10.3724/SP.J.1006.2011.02085

• 耕作栽培·生理生化 • 上一篇    下一篇

室外盆栽条件下盐胁迫对甜高粱光系统II活性的影响

王彩娟1,2,李志强3,王晓琳1,2,姜闯道1,*,唐宇丹1,谷卫彬1,石雷1   

  1. 1 中国科学院植物研究所,北京 100093;2 中国科学院研究生院,北京 100049;3 北京市农业职业技术学院,北京 102442
  • 收稿日期:2011-03-15 修回日期:2011-06-25 出版日期:2011-11-12 网络出版日期:2011-07-28
  • 通讯作者: 姜闯道, E-mail: jcdao@ibcas.ac.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30871455)和作物生物学国家重点实验室开放基金项目(2010KF04)资助。

Effects of Salt Stress on Photosystem II Activity in Sweet Sorghum Seedlings Grown in Pots Outdoors

WANG Cai-Juan1,2,LI Zhi-Qiang3,WANG Xiao-Lin1,2,JIANG Chuang-Dao1,*,TANG Yu-Dan1,GU Wei-Bin1,SHI Lei1   

  1. 1 Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; 2 Graduate School of Chinese Academy of Sciences, Beijing 100049, China; 3 Beijing Vocational College of Agriculture, Beijing 102442, China?
  • Received:2011-03-15 Revised:2011-06-25 Published:2011-11-12 Published online:2011-07-28
  • Contact: 姜闯道, E-mail: jcdao@ibcas.ac.cn

摘要: 室外盆栽条件下, 设置2个NaCl浓度(100 mmol L–1和200 mmol L–1), 调查盐胁迫对甜高粱光合特性和光系统II (PSII)活性的影响。结果表明,叶片Na+离子含量与Na+/K+比随盐浓度增加和处理时间延长而增加。净光合速率(Pn)、光系统II开放反应中心天线转化效率(Fv¢/Fm¢)、光化学猝灭系数(qP)和光系统II实际光化学效率(ΦPSII)随盐浓度的增加而降低,非光化学猝灭(NPQ)随盐浓度增加而增加;100 mmol L–1处理组的PnFv¢/Fm¢、qPΦPSII随处理时间延长有所恢复,但200 mmol L–1处理组无此现象。光系统II (PSII)最大光化学效率(Fv/Fm)在100 mmol L–1 NaCl处理时影响较小,但在200 mmol L–1 NaCl处理时明显下降。短期盐胁迫未影响荧光诱导动力学曲线,而200 mmol L–1 NaCl处理5 d后荧光诱导动力学曲线O-K和O-J相上升。进一步研究证明,PSII的失活速率在两个盐浓度下均无明显变化,而修复速率在200 mmol L–1盐浓度处理5 d后降低明显。因此,认为室外盆栽条件下盐胁迫造成甜高粱碳同化能力降低并改变PSII激发能分配;叶片Na+离子含量的大幅增加会导致PSII活性下降及光抑制,这与PSII失活速率无关,主要是失活PSII修复速率受抑制的结果。这对理解户外盐胁迫条件下C4作物的光抑制机制具有一定意义。

关键词: 盐胁迫, 光合特性, 光系统II, 甜高粱

Abstract: The effects of the different NaCl concentration treatments (100 mmol L1, 200 mmol L1) on photosynthetic characteristics and the photosystem II (PSII) activity in sweet sorghum seedlings grown in pots outdoors were carefully investigated in this study. The Na+ content and the ratio of Na+/K+ in leaves increased significantly with increases of NaCl concentration and treatment time. The net photosynthetic rate (Pn), the efficiency of excitation energy captured by open PSII reaction centers (Fv¢/Fm¢), the photochemical quenching (qP) and the actual photosystem II efficiency (ΦPSII) all decreased while the non-photochemical quenching (NPQ) increased greatly with the increasing of NaCl concentration. In addition, Pn, Fv¢/Fm¢, qP and ΦPSII had an ameliorative trend in the 100 mmol L1 NaCl treatment, but this phenomenon did not appear in 200 mmol L1 NaCl treatment. The maximum quantum yield of photosystem II photochemistry (Fv/Fm) was slightly affected in 100 mmol L1 NaCl treatment, whereas distinct decreased in 200 mmol L1 NaCl treatment. The chlorophyll fluorescence kinetic curves exhibited no changes at the beginning of NaCl treatment, while the rising speeds of O-K and O-J phases increased markedly in the 200 mmol L1 NaCl treatment after five days. Furthermore, the photoinactivation rate of PSII did not change in both treatments while the repair rate was depressed significantly after five days treatment of 200 mmol L1 NaCl. Therefore, we suggest that under salt stress the decrease of carbon assimilation capability in leaves of sweet sorghum seedlings grown in pots outdoors is mainly due to the accumulation of Na+, and salt stress alters the excited energy distribution. During salt stress outdoors, the decline of PSII activity is majorly attributed to the depression of the repair rate of the photoinactivated PSII, rather than the photoinactivation rate under high light. It is helpful to understand the mechanisms of photoinhibition in C4 crop outdoors under salt stress to some extent.

Key words: Salt stress, Photosynthetic characteristics, Photosystem II, Sweet sorghum

[1]Rao P S, Mishra B, Gupta S R, Rathore A. Reproductive stage tolerance to salinity and alkalinity stresses in rice genotypes. Plant Breed, 2008, 127: 256?261
[2]Munns R. Comparative physiology of salt and water stress. Plant Cell Environ, 2002, 25: 239?250
[3]Qiu N W, Lu Q T, Lu C M. Photosynthesis, photosystem II efficiency and the xanthophylls cycle in the salt-adapted halophyte Atriplex centralasiatica. New Phytol, 2003, 159: 479?486
[4]Koyro H W. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environ Exp Bot, 2006, 56: 136?146
[5]Wei Y, Xu X, Tao H, Wang P. Growth performance and physiological response in the halophyte Lycium barbarum grown at salt-affected soil. Ann Appl Biol, 2006, 149: 263?269
[6]Liu J, Shi D C. Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed stress. Photosynthetica, 2010, 48: 127?134
[7]Baker N R. A possible role for photosystem-II in environmental perturbations of photosynthesis. Plant Physiol, 1991, 81: 563?570
[8]Lu C, Jiang G, Wang B, Kuang T. Photosystem II photo-   chemistry and photosynthetic pigment composition in salt- adapted halophyte Artimisia anethifolia grown under outdoor conditions. J Plant Physiol, 2003, 160: 403?408
[9]Demiral T, Türkan I. Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environ Exp Bot, 2006, 56: 72?79
[10]Santos C V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sun?ower leaves. Hortscience, 2004, 103: 93?99
[11]Jiang Q, Roche D, Monaco T A, Durham S. Gas exchange, chlorophyll fluorescence parameters and carbon isotope discrimination of 14 barley genetic lines in response to salinity. Field Crops Res, 2006, 96: 269?278
[12]Suleyman I, Allakhverdiev, Murata N. Salt stress inhibits photosystems II and I in cyanobacteria. Photosynth Res, 2008, 98: 529?539
[13]Powles S B. Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol, 1984, 35: 15?44
[14]Long S P, Humphries S, Falkowski P G. Photoinhobition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Bioll, 1994, 19: 1083?1090
[15]Masojidek J, Hall D O. Salinity and drought stresses are amplified by high irradiance in sorghum. Photosynthetica, 1992, 27: 159?171
[16]Melgar J C, Guidi L, Remorini D, Agati G, Degl’Innocenti E, Castelli S, Baratto M C, Faraoni C, Tattini M. Antioxidant defenses and oxidative damage in salt-treated olive plants under contrasting sunlight irradiance. Tree Physiol, 2009, 29: 1187?1198
[17]Demmig-Adams B, Adams W W III. Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 599?626
[18]Allakhverdiev S I, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y, Murata N. Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA gene in Synechocystis. Plant Physiol, 2002, 130: 1443?1453
[19]Murata N, Takahashi S, Nishiyama Y, Allakhverdiev S I. Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta, 2007, 1767: 414?421
[20]Nishiyama Y, Suleyman I, Allakhverdiev S I, Yamamoto H, Hayashi H, Murata N. Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry, 2004, 43: 11321?11330
[21]Li D-J(黎大爵), Liao F-S(廖馥荪). Sweet Sorghum and Utility (甜高粱及其利用). Beijing: Science Press, 1992. p 17 (in Chinese)
[22]Schreiber U, Bflger W, Neubauer C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze E D, Caldwell M M, eds. Ecophysi-ology of Photosynthesis. Berlin: Springer-Verlag, 1994. pp 49?70
[23]Demmig A B, Adams W W III. Xanthophyll cyde and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta, 1996, 198: 460?470
[24]Jiang C D, Li P M, Gao H Y, Qi Z, Jiang G M, Li L H. Enhanced photoprotection at the early stages of leaf expansion in field- grown soybean plants. Plant Sci, 2005, 168: 911?919
[25]Jiang C D, Jiang G M, Wang X Z, Li L H, Biswas D K, Li Y G. Increased photosynthetic activities and thermo-stability of photo- system II with leaf development of Elm seedlings (Ulmus punila) probed by the fast fluorescence rise OJIP. Environ Exp Bot, 2006, 58: 261?268
[26]Lee H Y, Hong Y N, Chow W S. Photo-inactivation of photo- system II complexes and photo-protection by non-functional neighbors in Capsicum annuum L. leaves. Planta, 2001, 212: 332?342
[27]He J, Chow W S. The rate coefficient of repair of photosystem II after photoinactivation. Physiol Plant, 2003, 118: 297?304
[28]Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Straeten D V D, Peng J, Harberd N P. Integration of plant responses to environmentally activated phytohormonal signals. Science, 2006, 311: 91?94
[29]Prásil O, Adir N, Ohad I. Dynamics of photosystem II: mechanism of photoinhibition and recovery process, in: Barber J ed. The Photo-systems: Structure, Function and Molecular Biol-ogy. Vol. 11. Amsterdam, The Netherlands: Elsevier Science Publishers, 1992. pp 295?348
[30]Aro E M, Virgin I, Andersson B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta, 1993, 1143: 113?134
[31]Ge J-L(葛江丽), Shi L(石雷), Gu W-B(谷卫彬), Tang Y-D(唐宇丹), Zhang J-Z(张金政), Jiang C-D(姜闯道), Ren D-M(任大明). Photosynthetic characteristics and the regulation of photosystem II function in salt-stressed sweet sorghum seedlings. Acta Agron Sin (作物学报), 2007, 33(8): 1272?1278 (in Chinese with English abstract)
[1] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[2] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[3] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[4] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[5] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
[6] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[7] 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439.
[8] 韦还和, 张徐彬, 葛佳琳, 陈熙, 孟天瑶, 杨洋, 熊飞, 陈英龙, 戴其根. 盐胁迫对水稻颖花形成及籽粒充实的影响[J]. 作物学报, 2021, 47(12): 2471-2480.
[9] 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响[J]. 作物学报, 2021, 47(12): 2490-2500.
[10] 辛正琦, 代欢欢, 辛余凤, 何潇, 谢海艳, 吴能表. 盐胁迫下外源2,4-表油菜素内酯对颠茄氮代谢及TAs代谢的影响[J]. 作物学报, 2021, 47(10): 2001-2011.
[11] 冯克云, 王宁, 南宏宇, 高建刚. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响[J]. 作物学报, 2021, 47(1): 125-137.
[12] 韦还和,葛佳琳,张徐彬,孟天瑶,陆钰,李心月,陶源,丁恩浩,陈英龙,戴其根. 盐胁迫下粳稻品种南粳9108分蘖特性及其与群体生产力的关系[J]. 作物学报, 2020, 46(8): 1238-1247.
[13] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻海藻糖生物合成关键酶基因HcTPPJ的克隆及响应逆境的表达分析[J]. 作物学报, 2020, 46(12): 1914-1922.
[14] 李润枝, 靳晴, 李召虎, 王晔, 彭真, 段留生. 水杨酸提高甘草种子萌发和幼苗生长对盐胁迫耐性的效应[J]. 作物学报, 2020, 46(11): 1810-1816.
[15] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应[J]. 作物学报, 2020, 46(10): 1617-1627.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!