欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (11): 2094-2098.doi: 10.3724/SP.J.1006.2011.02094

• 耕作栽培·生理生化 • 上一篇    下一篇

不同棉花基因型钾效率特征及其根系形态的差异

郝艳淑1,姜存仓1,*,王晓丽1,夏颖1,陈防2   

  1. 1 华中农业大学资源与环境学院,湖北武汉 430070;2 中国科学院武汉植物园,湖北武汉 430074
  • 收稿日期:2011-04-02 修回日期:2011-07-15 出版日期:2011-11-12 网络出版日期:2011-09-06
  • 通讯作者: 姜存仓, E-mail: cotton2000@mail.hzau.edu.cn, Tel: 027-87287141
  • 基金资助:

    本研究由国家自然科学基金项目(40801112)和国际植物营养研究所(IPNI)基金项目(HuBei-37)资助。

Differences of Potassium Efficiency Characteristics and Root Morphology between Two Cotton Genotypes

HAO Yan-Shu1,JIANG Cun-Cang1,*,WANG Xiao-Li1,XIA Ying1,CHEN Fang2   

  1. 1 College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; 2 Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
  • Received:2011-04-02 Revised:2011-07-15 Published:2011-11-12 Published online:2011-09-06
  • Contact: 姜存仓, E-mail: cotton2000@mail.hzau.edu.cn, Tel: 027-87287141

摘要: 以水培方法研究钾对两种棉花基因型钾效率特征及其根系形态上的差异。结果表明,高效基因型103钾利用效率在低钾与适钾时分别为160.2 g g-1和47.5 g g-1,而低效基因型122为133.8 g g-1和37.9 g g-1;在低钾和适钾处理时,103叶片钾积累量占全株钾积累量的84.6%和62.6%,122分别是63.4%和56.0%。在不同钾处理下103根系各参数均高于122,低钾时103总根长和根总表面积分别增加46.2%和13.9%,122根系各参数则均下降。缺钾抑制了粗根的生长,103在低钾时粗根的总根长、根表面积和根体积分别降低了54.0%、62.8%和75.2%;122粗根各参数也有所降低。但低钾时103细根的总根长、根表面积和根体积增加了69.0%、77.0%和80.4%,分别是122的1.9、2.3和2.6倍。

关键词: 棉花, 基因型, 钾效率, 根系形态

Abstract: The objective of this study was to analysis K-efficiency and root morphology in two kinds of K-efficiency cotton genotypes. The results showed that K-efficiency of genotype 103 was 160.2 g g-1 and 47.5 g g-1 at low (4 mg L–1) and high (40 mg L–1) K levels while genotype 122 was 133.8 g g-1 and 37.9 g g-1. In addition, genotype103 had higher ability to transfer K to leaves than genotype 122. Under two K levels, Leaves K accumulation of genotype 103 was 84.6% and 62.6% of the whole plant, while that of genotype 122 was 63.4% and 56.0%. High K-efficiency genotype 103 had higher total root length, surface area and volume than low K-efficiency genotype 122 regardless of the K concentration treated. Especially when the concentration of K in the environment was poor, genotype103 still had better root system than genotype122. When K was insufficient, the total root length and total root surface area of genotype 103 increased by 46.2% and 13.9%, while genotype 122 showed decreases in root parameters. Root system was classified into fine roots, middle roots and coarse roots according to root diameter. Low K condition limited the development of coarse roots. In genotype 103, coarse root length, surface area and root volume decreased by 54.0%, 62.8%, and 75.2% respectively, meanwhile, genotype 122 also had a reducing coarse root parameters. Effect of low K condition on fine roots varied in different cotton genotypes. The fine root length, surface area and volume of genotype 103 increased by 69.0%, 77.0%, and 80.4%, compared with these in appropriate K treatment, and were 1.9, 2.3, and 2.6 times higher than these of genotype 122, respectively.

Key words: Cotton, Genotype, K-efficiency, Root morphology

[1]Marschner H, Kirkby E A, Cakmak I. Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot, 1996, 47: 1225–1263
[2]Jungk A. Root hairs and the acquisition of plant nutrients from soil. J Plant Nutr Soil Sci, 2001, 164: 121–129
[3]Zhang Z-Y(张志勇), Wang Q-L(王清连), Li Z-H(李召虎), Duan L-S(段留生), Tian X-L(田晓莉). Effect of potassium deficiency on root growth of cotton (Gossypium hirsutum L.) seedlings and its physiological mechanisms involved. Acta Agron Sin (作物学报), 2009, 35(4): 718–723 (in Chinese with English abstract)
[4]Yi B(依兵), Yu H-Q(于海秋), Jiang C-J(蒋春姬), Liu Y(刘宇), Wang X-L(王晓磊), Cao M-J(曹敏建). Response of maize inbred lines root to low potassium stress. J Maize Sci (玉米科学), 2010, 18(6): 46–50 (in Chinese with English abstract)
[5]Rosolem C A, Silva R H, Esteves J A F. Potassium supply to cotton roots as affected by potassium fertilization and liming. Pesq Agropec Bras, 2003, 38(5): 635–641
[6]Jiang C-C(姜存仓), Yuan L-S(袁利升), Wang Y-H(王运华), Lu J-W(鲁剑巍), Xu F-S(徐芳森). K-efficiency in different cotton genotypes at seeding stage. J Huazhong Agric Univ (华中农业大学学报), 2003, 22(6): 564–568 (in Chinese with English abstract)
[7]Jiang C-C(姜存仓), Wang Y-H(王运华), Lu J-W(鲁剑巍), Xu F-S(徐芳森), Gao X-Z(高祥照). Potassium efficiency of different cotton varieties at seedling stage. Cott Sci (棉花学报), 2004, 16(3): 162–165 (in Chinese with English abstract)
[8]Jiang C-C(姜存仓), Gao X-Z(高祥照), Wang Y-H(王运华), Lu J-W(鲁剑巍), Xu F-S(徐芳森), Shi L(石磊). Potassium efficiency of various cotton genotypes and its nutritional mechanisms. Plant Nutr Fert Sci (植物营养与肥料学报), 2005, 11(6): 781–786 (in Chinese with English abstract)
[9]Jiang C-C(姜存仓), Gao X-Z(高祥照), Wang Y-H(王运华), Lu J-W(鲁剑巍), Xu F-S(徐芳森). Response of difference potassium efficiency cotton genotypes to potassium deficiency. Cott Sci (棉花学报), 2006, 18(2): 109–114 (in Chinese with English abstract)
[10]Tian X-L(田晓莉), Wang G-W(王刚卫), Zhu R(朱睿), Yang P-Z(杨培珠), Duan L-S(段留生), Li Z-H(李召虎). Conditions and indicators for screening cotton (Gossypium hirsutum) genotypes tolerant to low-potassium. Acta. Agron Sin (作物学报), 2008, 34(8): 1435–1443 (in Chinese with English abstract)
[11]Chen B-L(陈波浪), Sheng J-D(盛建东), Jiang P-A(蒋平安), Hou J(侯静). Comparison of absorption and utilization for different cotton varieties. Plant Nutr Fert Sci (植物营养与肥料学报), 2009, 15(5): 1154–1159 (in Chinese with English abstract)
[12]Brouder S M, Cassman K G. Root development of two cotton cultivars in relation to potassium uptake and plant growth in a vermiculitic soil. Field Crop Res, 1990, 23: 187–203
[13]Hassan Z U, Arshad M. Cotton growth under potassium deficiency stress is influenced by photosynthetic apparatus and root system. Pak J Bot, 2010, 42: 917–925
[14]Bao S-D. Soil Agro-Chemistry Analysis (土壤农化分析). Beijing: China Agricultural Press, 2007. pp 270–271 (in Chinese)
[15]Sullivan W M, Jiang Z C, Hull R J. Root morphology and its relationship with nitrate uptake in Kentucky Bluegrass. Crop Sci, 2000, 40: 765–772
[16]Rengel Z, Damon P M, Crops and genotypes differ in efficiency of potassium uptake and use. Physiol Plant, 2008, 133: 624–636
[17]Xie S-P(谢少平). Regulation of potassium absorption in higher plants. Plant Physiol Commun (植物生理学通讯), 1989, (4): 1–7 (in Chinese)
[18]Jiang L-Y(姜理英), Yang X-E(杨肖娥), Shi W-Y(石伟勇). Potassium-sodium substitution and physiological effect of the substitution on crops. Chin J Siol Sci (土壤通报), 2001, 32(1): 28–32 (in Chinese with English abstract)
[19]Xu G-H(徐国华), Bao S-D(鲍士旦), Yang J-P(杨建平), Wu M(吴明). The relationship between potassium absorption ability and root parameters of different crops. J Nanjing Agric Univ (南京农业大学学报), 1995, 18(1): 49–52 (in Chinese with English abstract)
[20]Batten G D, Khan M A, Cullis B R. Yield responses by modern wheat genotypes to phosphates fertilizer and their implications for breeding. Euphytica, 1984, 33: 81–89
[21]Zou C-Q(邹春琴), Li Z-S(李振声), Li J-Y(李继云). Study on difference in morpholofical and physiological characters of wheat varieties to potassium. Plant Nutr Fert Sci (植物营养与肥料学报), 2001, 7(1): 36–43 (in Chinese)
[22]Jensen H H, Pedersen M B. Morphological plasticity by crop plants and their potassium use efficiency. J Plant Nutr, 2003, 26: 969–984
[23]Libault M, Brechenmarcher L, Cheng J L, Xu D, Stacey G. Root hair systems biology. Trends Plant Sci, 2010, 15: 641–649
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 吴冰卉, 王桂萍, 王玉斌, 李召虎, 张明才. ACC处理对不同基因型玉米幼苗响应氮素供给的调控效应[J]. 作物学报, 2021, 47(5): 799-806.
[11] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[12] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[13] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[14] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[15] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!