欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (3): 512-521.doi: 10.3724/SP.J.1006.2009.00512

• 耕作栽培·生理生化 • 上一篇    下一篇

抽穗和灌浆早期高温对耐热性不同籼稻品种产量的影响及其生理原因

曹云英1,2 ,段骅1,杨立年1,王志琴1,刘立军1,杨建昌1,*   

  1. 1扬州大学江苏省作物遗传生理重点实验室,江苏扬州2250009;2南通大学生命科学学院,江苏南通226007
  • 收稿日期:2008-06-27 修回日期:2008-09-05 出版日期:2009-03-12 网络出版日期:2008-12-12
  • 通讯作者: 杨建昌
  • 基金资助:

    本研究由国家自然科学基金项目(30671225,30771274),江苏省自然科学基金项目(BK2006069),国家科技攻关计划项目(2006BAD02A13-3-2)资助.

Effect of High Temperature during Heading and Early Grain Filling on Grain Yield of Indica Rice Cultivars Differing in Heat-Tolerance and Its Physiological Mechanism

CAO Yun-Ying1,2,DUAN Hua1,YANG Li-Nian1,WANG Zhi-Qing1,LIU Li-Jun1,YANG Jian-Chang1,*   

  1. 1Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009,China;2College of Life Sciences, Nantong University, Nantong 226007,China
  • Received:2008-06-27 Revised:2008-09-05 Published:2009-03-12 Published online:2008-12-12
  • Contact: YAGN Jian-Chang

摘要:

选用4耐热性不同的籼稻品种,分别于抽穗(始穗0~10 d)和灌浆早期(始穗11~20 d)进行高温(白天温度>33℃)处理,以同期自然温度(白天温度<30℃)为对照,研究高温对产量的影响及其生理机制。结果表明,与对照相比,高温处理显著降低热敏感品种的花粉可育率、受精率,而耐热品种与对照无显著差异。高温胁迫明显降低热敏感品种的结实率,导致产量显著下降,且抽穗期高温处理影响大于灌浆早期处理。高温胁迫显著增加耐热品种黄华占叶片的抗氧化酶活性,对热敏感品种影响不大。高温胁迫显著降低热敏感品种籽粒ATP酶活性,耐热品种结果则相反。高温处理增加两类品种叶片温度和丙二醛(MDA)含量,降低根系活力和叶片光合速率,耐热品种增降的幅度显著小于热敏感品种。在高温胁迫下较低的叶片温度,较强的根系活力和抗氧化保护系统能力及较高的籽粒ATP酶活性是耐热性品种保持较高产量的重要生理原因,也是耐热品种的重要生理特征。

关键词: 水稻, 高温, 产量, 耐热性, 生理机制

Abstract:

Heading/flowering and early grain filling are the most stress-sensitive periods in rice growth and development. However, little is known how heat-stress during these periods affects the yield formation. This study investigated pollen development, yield components, and some physiological parameters under high temperature treatments during heading and early grain filling. Four indica rice cultivars, Shuanggui 1 and T219 (heat-sensitive), Huanghuazhan and T226 (heat-tolerant), were pot-grown and subjected to high temperature treatments (the mean temperature during the day > 33℃) during heading/flowering (010 d after heading) and early grain filling (1120 d after heading), and the natural temperature (the mean temperature during the day < 30℃) was taken as the control. The results showed that the high temperature treatment significantly reduced pollen and spikelet fertility rate in heat-sensitive cultivars, and not in heat-tolerant cultivars compared with the control. Seed-setting rate was significantly decreased under the high temperature for heat-sensitive cultivars, leading to a significant reduction in grain yield, with a more reduction under the treatment during heading than during early grain filling. It was less affected for heat-tolerant cultivars. The heat-stress treatment significantly increased activities of enzymes involved in antioxidant system in leaves for the heat-tolerant cultivars, while it much less affected for heat-sensitive cultivars. The high temperature significantly reduced ATPase activity in grains for the heat-sensitive cultivars, and the result was reversed for the heat-tolerant ones. The high temperature increased leaf-temperature and malonyldialdehyde content in leavesand reduced root activity and the photosynthetic rate of the flag leaf for both kinds of cultivars, butthe increase or reduction was less for heat-tolerant cultivars than for heat-sensitive cultivars. These results suggested that lower leaf-temperature, higher root activity, higher ATPase activity in grains, and higher photosynthetic rate and activities of antioxidant enzymes in leaves would be important physiological traits leading to a higher grain yield for a heat-tolerant rice cultivar.

Key words: Rice, High temperature, Grain yield, Heat-tolerance, Physiological mechanism

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[6] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[7] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[8] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[9] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[10] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[11] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[12] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[13] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[14] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[15] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!