欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (4): 749-754.doi: 10.3724/SP.J.1006.2009.00749

• 研究简报 • 上一篇    下一篇

皖南不同类型土壤植烟成熟期烟叶的基因差异表达和显微结构的比较

邱立友1,李富欣2,宜朝龙3,马称心3,杨超2,冯云1,刘国顺2,赵会杰1*   

  1. 1河南农业大学生命科学学院,河南郑州450002;2河南农业大学农学院,河南郑州450002;3安徽皖南烟叶有限公司,安徽宣城242000
  • 收稿日期:2008-06-04 修回日期:2008-12-15 出版日期:2009-04-12 网络出版日期:2009-02-16
  • 通讯作者: 赵会杰,0371-63555319; E-mail: zhaohj303@163.com
  • 基金资助:

    本研究由国家烟草专卖局重大科技攻关项目(20060202)资助。

Comparison on Gene Expression and Microstructure of Tobacco Leaves at Maturity Stage in Different Types of Soil in southern Anhui Province,China

QIU Li-You1,LI Fu-Xin2,ZU Chao-Long3,MA Chen-Xin3,YANG Chao2,FENG Yun1,LIU Guo-Shun2,ZHAO Hui-Jie1*   

  1. 1College of Life Sciences,Henan Agricultural University,Zhengzhou 450002,China;2Agronomy College,Henan Agricultural University,Zhengzhou 450002,China;3Anhui Wannan Tobacco Leaf Co.Ltd.,Xuancheng 242000,China
  • Received:2008-06-04 Revised:2008-12-15 Published:2009-04-12 Published online:2009-02-16
  • Contact: ZHAO Hui-Jie

摘要:

以烟草品种云烟97为材料,在皖南烟区典型的植烟土壤麻沙土、麻沙泥、粉沙土种植,以水稻土种植作对照,应用基因芯片技术和显微观察技术对生长成熟期烟叶的基因表达谱和细胞结构进行比较。结果表明,与水稻土相比,麻沙土植烟成熟期烟叶上调表达的基因主要有细胞增殖、生长和分化的基因,以及与氧化胁迫有关的基因,而下调表达的基因主要是光合作用和蛋白质、磷脂合成的基因。麻沙泥植烟成熟期烟叶上调表达的基因主要有与生长素运输和多糖合成有关的基因及与蛋白质和氨基酸分解有关的基因。粉沙土植烟成熟期烟叶与干旱胁迫有关的基因和与纤维素、果胶质、淀粉和蛋白质分解有关的基因上调。叶片的显微和超显微结构表明,粉沙土和水稻土植烟,烟叶长势差,生长衰退迹象明显;而麻沙土和麻泥土植烟,尤其是麻沙土,烟叶生长势较好,生长衰退迹象不明显。

关键词: 烟草, 土壤类型, 成熟期, 基因芯片, 显微结构

Abstract:

Yunyan 97(Nicotiana tabacum) was planted in four types of soil including coarse sandy soil, coarse sandy mud, powder sandy soil, and rice soil (CK), in the south of Anhui. The gene expression profile and cell construction of tobacco leaves at maturity stage were explored using cDNA microarray and microscopical technique. Comparing tobacco leaves grown in coarse sandy soil to rice soil, up-regulated genes were mainly for cell multiplication, growth, development, and oxidation stress, while genes in photosynthesis, protein and phospholipids synthesis were down-regulated. Specifically up-regulated genes involved in auxin transport, polysaccharide synthesis, and responsible for protein and amino acid degradation in tobacco leaves cultivated in coarse sandy mud briefly compared with rice soil. Compared to rice soil, up-regulated genes of tobacco leaves in powder sandy soil principally dealt with drought stressand degrading cellulose, pectin, starch, and protein. The microscopic and ultramicroscopic structure of the tobacco leaves revealed that tobacco leaves in powder sandy soil and rice soil grew badly. On the contrary, coarse sandy mud and especially coarse sandysoil produced well grown leaves. The results should conduce to unveil the mechanism of burnt-sweet sensation formation in tobacco leaves cultivated in the south of Anhui Province.

Key words: Tobacco, Soil type, Maturity stage, cDNA microarray, Microstructure

[1] Liu G-S(刘国顺), Yang C(杨超), Zu C-L(祖朝龙), Qiu L-Y(邱立友), Feng Y(冯云). Study on edaphon dynamics in four type s of soil. Acta Tab Sin (中国烟草学报), 2007, 13(5): 38–43(in Chinese with English abstract)
[2] Yang C(杨超), Liu G-S(刘国顺), Qiu L-Y(邱立友), Zu C-L(祖朝龙), Wang F(王芳). A primary investigation of microorganism population in different types of tobacco planting soils. Chin Tob Sci (中国烟草科学), 2007, 28(5): 31–36(in Chinese with English abstract)
[3] Miao F(苗芳), Zhang S-W(张篙午). Microstructure and ultrastructure changes of flag leaf during the anthesis bearing stage of wheat. J Northwest A&F Univ (Nat Sci Edn)(西北农林科技大学学报·自然科学版), 2004, 32(suppl): 6–10
[4] Aubourg S, Kreis M, Lecharny A. The DEAD box RNA helicase family in Arabidopsis thaliana. Nucl Acids Res, 1999, 27: 628–636
[5] Riechmann J L, Heard J, Martin G, Reuber L, Jiang C Z, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G L. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105–2110
[6] Liu Q(刘 强), Zhang G-Y(张贵友), Chen S-Y(陈受宜). Structure and regulatory function of plant transcription factors. Chin Sci Bull (科学通报), 2000, 45(14): 1465–1474 (in Chinese with English abstract)
[7] Abe M, Takahashi T, Komeda Y. Cloning and characterization of an L1 layer-specific gene in Arabidopsis thaliana. Plant Cell Physiol, 1999, 40: 571–580
[8] Cvr?ková F, Novotny M, Pícková D, Zársky V. Formin homology 2 domains occur in multiple contexts in angiosperms. BMC Genomics, 2004, 5: 44. doi: 10.1186/1471-2164-5-44
[9] Li C B, Gao F, Zhong Y W, Wei C H, Li Y. Cloning and functional analysis of tobacco pectin methylesterase. Prog Bio-Chem Biophys, 2004, 31: 643–649
[10] Ogawa T, Pan L, Kawai-Yamada M, Yu L H, Yamamura S, Koyama T, Kitajima S, Ohme-Takagi M, Sato F, Uchimiya H. Functional analysis of Arabidopsis ethylene-responsive element binding protein conferring resistance to Bax and abiotic stress-induced plant cell death. Plant Physiol, 2005, 138: 1436–1445
[11] Romeis T, Piedras P, Zhang S Q, Klessig D F, Hirt H, Jones J D G. Rapid Avr 9- and Cf-9-dependent activation of MAP kinases in tobacco cell cultures and leaves: Convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell, 1999, 11: 273–287
[12] Inada S, Ohgishi M, Mayama T, Okada K, Sakai T. RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. Plant Cell, 2004, 16: 887–896
[13] Chen Y, Yang X, He K, Liu M, Li J, Gao Z, Lin Z, Zhang Y, Wang X, Qiu X, Shen Y, Zhang L, Deng X, Luo J, Deng X-W, Chen Z, Gu H, Qu L J. The MYB transcription factor superfamily of Arabidopsis: Expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol, 2006, 60: 107–124
[14] Babula D, Misztal L H, Jakubowicz M, Kaczmarek M, Nowak W, Sadowski J. Genes involved in biosynthesis and signalisation of ethylene in Brassica oleracea and Arabidopsis thaliana: identification and genome comparative mapping of specific gene homologues. Theor Appl Genet, 2006, 112: 410–420
[15] Paul S, Gable K, Dunn T M. A six-membrane-spanning topology for yeast and Arabidopsis Tsc13p, the enoyl reductases of the microsomal fatty acid elongating system. J Biol Chem, 2007, 282: 19237–19246
[16] Buttery R G, Ling L C, Juliano B O, Turnbaugh J G. Cooked rice aroma and 2-acetyl-1-pyrroline. J Agric Food Chem, 1983, 31: 823–826
[17] Yoshihashi T, Huong N T T, Inatomi H. Precursors of 2-acetyl-1-pyrroline, a potent flavor compound of an aromatic rice variety. J Agric Food Chem, 2002, 50: 2001–2004
[18] Yoshihashi T, Nguyen T T H, Kabaki N. Area dependency of 2-acetyl-1-pyrroline content in an aromatic rice variety, Khao Dawk Mali 105. Jarq-Japan Agric Res Q, 2004, 38: 105–109
[19] Tuteja N. Mechanisms of high salinity tolerance in plants. Methods Enzymol, 2007, 428: 419–438
[20] Roychoudhury A, Basu S, Sailendra N. Sarkar S N, Sengupta D N. Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic indica rice cultivars. Plant Cell Rep, 2008, 27: 1395–1410
[21] Wei Y-Q(魏玉清), Xu X(许兴), Wang P(王璞). Physiological responses of Lycium barbarum L. under soil salt stress. Chin Agric Sci Bull (中国农学通报), 2005, 21(9): 213–217(in Chinese with English abstract)
[22] Niu Y(牛艳), Xu X(许兴), ZhengG-Q(郑国琦), Wei Y-Q(魏玉清). Study on relationships between soil fertilizer and salt and polysaccharide and total sugar of Lycium barbarum different regions of Ningxia. Chin Agric Sci Bull (中国农学通报), 2006, 22(12): 51–69(in Chinese with English abstract)
[1] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[2] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[3] 王诗雅, 郑殿峰, 冯乃杰, 梁喜龙, 项洪涛, 冯胜杰, 靳丹, 刘美玲, 牟保民. 植物生长调节剂S3307对苗期淹水胁迫下大豆生理特性和显微结构的影响[J]. 作物学报, 2021, 47(10): 1988-2000.
[4] 董庆园,马德清,杨学,刘勇,黄昌军,袁诚,方敦煌,于海芹,童治军,沈俊儒,许银莲,罗美中,李永平,曾建敏. 高抗黑胫病烤烟BAC文库的构建及分析[J]. 作物学报, 2020, 46(6): 869-877.
[5] 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512.
[6] 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869.
[7] 李乐晨,朱国忠,苏秀娟,郭旺珍. 适于海岛棉指纹图谱构建的SNP核心位点筛选与评价[J]. 作物学报, 2019, 45(5): 647-655.
[8] 马晓寒,张杰,张环纬,陈彪,温心怡,许自成. 通过外源MeJA抑制H2O2积累提高烟草的耐冷性[J]. 作物学报, 2019, 45(3): 411-418.
[9] 童治军,张谊寒,陈学军,曾建敏,方敦煌,肖炳光. 雪茄烟品种Beinhart1000-1赤星病抗性基因的QTL定位[J]. 作物学报, 2019, 45(3): 477-482.
[10] 谈欢,刘玉汇,李丽霞,王丽,李元铭,张俊莲. 马铃薯块茎花色素苷合成相关R2R3 MYB蛋白基因的克隆和功能
分析
[J]. 作物学报, 2018, 44(7): 1021-1031.
[11] 赵仁欣,李森业,郭瑞星,曾新华,文静,马朝芝,沈金雄,涂金星,傅廷栋,易斌. 利用SNP芯片构建我国冬油菜参试品种DNA指纹图谱[J]. 作物学报, 2018, 44(7): 956-965.
[12] 王建伟,贺晓岚,李文旭,陈新宏. 小麦近缘属植物1-FFT基因的克隆及功能分析[J]. 作物学报, 2018, 44(6): 814-823.
[13] 钟思荣,陈仁霄,陶瑶,龚丝雨,何宽信,张启明,张世川,刘齐元. 耐低氮烟草基因型的筛选及氮效率分析[J]. 作物学报, 2017, 43(07): 993-1002.
[14] 武炳瑾,简俊涛,张德强,马文洁,冯洁,崔紫霞,张传量,孙道杰*. 利用90k芯片技术进行小麦穗部性状QTL定位[J]. 作物学报, 2017, 43(07): 1087-1095.
[15] 赵佩,腾丽杰,王轲,杜丽璞,任贤,佘茂云,叶兴国. 小麦TaVIP1家族基因克隆、分子特性及功能分析[J]. 作物学报, 2017, 43(02): 201-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!