欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (5): 761-767.doi: 10.3724/SP.J.1006.2009.00761

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

来自野生二粒小麦IW3和IW10的两个白粉病基因的鉴定及SSR标记定位

李根桥,房体麟**,张宏涛,解超杰,杨作民,孙其信,刘志勇*   

  1. 中国农业大学植物遗传育种系/农业生物技术国家重点实验室/农业部作物基因组学与遗传改良重点开放实验室/教育部作物杂种优势研究与利用重点实验室,北京100193
  • 收稿日期:2008-12-04 修回日期:2009-02-17 出版日期:2009-05-12 网络出版日期:2009-03-20
  • 通讯作者: 刘志勇
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA100102,2006AA10Z1E9,2006AA10Z1C4,2006BAD01A02),国家杰出青年科学基金项目(30425039),北京市自然科学基金(6061003),教育部长江学者和创新团队发展计划项目,高等到学校学科创新引智计划项目(111-2-03)资助。

Identification and SSR Mapping of Two Powdery Mildew Resistance Genes in Wild Emmer (Triticum dicoccoides) Accessions IW3 and IW10

LI Gen-Qiao,FANG Ti-Lin**,ZHANG Hong-Tao,XIE Chao-Jie,YANG Zuo-Min,SUN Qi-Xin,LIu Zhi-Yong   

  1. Department of Plant Genetics & Breeding,China Agricultural University/State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Genomics and Genetic Improvement, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, Beijing 100193,China
  • Received:2008-12-04 Revised:2009-02-17 Published:2009-05-12 Published online:2009-03-20
  • Contact: LIU Zhi-Yong

摘要:

野生二粒小麦(Triticum dicoccoides)是小麦抗病育种的重要资源库之一。来自以色列Mount Hermon的野生二粒小麦材料IW3 和IW10对我国小麦白粉病菌生理小种E09表现高抗。对硬粒小麦Langdon与IW3和IW10两个杂交组合F2分离群体和F3家系的遗传分析表明,IW3和IW10对小麦白粉菌E09的抗性均受显性单基因控制,暂被命名为MlIW3和MlIW10。采用BSA法和SSR标记分析,筛选到与抗白粉病基因MlIW3和MlIW10连锁的5个SSR标记,这两个基因均位于Xbarc84和Xwmc326之间,顺序为Xbarc84–4.6 cM–MlIW3–1.6 cM–Xwmc326和Xbarc84–6.6 cM–MlIW10–0.6 cM–Xwmc326。根据SSR分子标记的遗传图谱和在中国春的缺体—四体、双端体和缺失系的定位结果,这两个抗白粉病基因被定位在3BL染色体的末端。根据MlIW3和MlIW10的来源和分子标记定位结果,推断这两个基因可能是小麦抗白粉病基因Pm41或其等位基因或位于同一个基因簇中。

关键词: 野生二粒小麦, 抗白粉病基因, SSR标记

Abstract:

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a major wheat disease in the world. Deployment of resistant varieties is considered the most economical and effective way for controlling the disease. Wild emmer is one of the important genetic resources for wheat disease resistance genes. Two wild emmer accessions, IW3 and IW10, collected from Mount Hermon, Israel, are highly resistant to prevailing Bgt isolate E09. Genetic analyses of the F2 populations and F3 progenies derived from the crosses between Triticum durum cultivar Langdon and IW3 or IW10 indicated that each accession possessed a single dominant gene, temporarily designated MlIW3 and MlIW10, respectively, conferred resistance to Bgt isolate E09. Bulked segregant analysis (BSA) and SSR mapping revealed that both MlIW3 and MlIW10 were flanked by SSR markers Xbarc84 and Xwmc326 with genetic distances of Xbarc84–4.6 cM–MlIW3–1.6 cM–Xwmc326 and Xbarc84–6.6 cM–MlIW10–0.6 cM–Xwmc326. Both MlIW3 and MlIW10 were physically mapped on the distal bin of chromosome 3BL using Chinese Spring nullisomic–tetrasomic, ditelisomic, and deletion lines. According to the collecting geographic sites of IW3 and IW10 in Israel and the SSR mapping data, MlIW3 and MlIW10 appear to be the same or allelic to wild emmer derived powdery mildew resistance gene Pm41 or in the same cluster with it.

Key words: Wild emmer, Powdery mildew resistance genes, SSR marker

[1] Bennett F G A. Resistance to powdery mildew in wheat: A review of its use in agriculture and breeding programmes. Plant Pathol, 1984, 33: 279–300
[2] Zhuang Q-S (庄巧生). Chinese wheat improvement and pedigree analysis. Beijing: China Agriculture Press, 2003. pp 469–487 (in Chinese)
[3] Huang X Q, Hsam S L K, Zeller F J. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.): 4. Gene Pm24 in Chinese landrace Chiyacao. Theor Appl Genet, 1997, 95: 950–953
[4] McIntosh R A, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers D J, Apples R, Devos K M. Catalogue of gene symbols for wheat. In Appels R, Eastwood R, Lagudah E. eds. Proc 11th Int Wheat Genet Symp, Sydney University Press, Sydney, Australia, 2008
[5] Zhang Z-Y(张增艳), Chen X(陈孝), Zhang C(张超), Xin Z-Y(辛志勇), Chen X-M(陈新民). Selecting the pyramids of powdery mildew resistance genes Pm4b, Pm13 and Pm21 in wheat assisted by molecular marker. Sci Agric Sin (中国农业科学), 2002, 35(7): 789–793 (in Chinese with English abstract)
[6] Xie C-J(解超杰), Sun Q-X(孙其信), Yang Z-M(杨作民). Resistance of wild emmers from Israel to wheat rusts and powdery mildew at seedling stage. J Triticeae Crops (麦类作物学报), 2003, 23 (2): 39–42 (in Chinese with English abstract)
[7] Nevo E. Genetic resources of wild emmer, Triticum dicoccoides for wheat improvement: news and views. In: Li Z S, Xin Z Y, eds. Proc 8th Int Wheat Symp. Beijing: China Agricultural Science and Technology Press, 1995. pp 79–87
[8] Reader S M, Miller T E. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica, 1991, 53: 57–60
[9] Rong J K, Millet E, Manisterski J. A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica, 2000, 115: 121–126
[10] Liu Z Y, Sun Q X, Ni Z F, Nevo E, Yang T M. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica, 2002, 123: 21–29
[11] Blanco A, Gadaleta A, Cenci A, Carluccio A V, Abdelbacki A M M, Simeone R. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor Appl Genet, 2008, 117: 135–142
[12] Li G Q, Fang T L, Xie C J, Yang T M, Nevo E, Fahima T, Sun Q X, Liu Z Y. Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet 2009 (in press)
[13] Hua W, Liu Z, Zhu J, Xie C, Yang T, Zhou Y, Duan X, Sun Q, Liu Z. Identification and genetic mapping of a new recessive powdery mildew resistance gene Pm42 in wheat derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet 2009 (in press)
[14] Mohler V, Zeller F J, Wenzel G, Hsam S L K. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.): 9. Gene MlZec1 from the Triticum dicoccoides-derived wheat line Zecoi-1. Euphytica, 2005, 142: 161–167
[15] Ji X L, Xie C J, Ni Z F, Yang T M, Nevo E, Fahima T, Liu Z Y, Sun Q X. Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum dicoccoides) accession IW72 from Israel. Euphytica, 2008, 159: 385–390
[16] Liu Z, Sun Q, Ni Z, Yang T. Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breed, 1999, 118: 215–219
[17] Sharp P G, Kreis M, Shewry P R, Gale M D. Resistance to Puccinia recondite tritici in synthetic hexaploid wheats. Indian J Genet, 1988, 58: 263–269
[18] R?der M S, Korzun V, Wendehake K A. Microsatellite map of wheat. Genetics, 1998, 149: 2007–2023
[19] Pestsova E, Ganal M W, R?der M S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 2000, 43: 689–697
[20] Eujayl I, Sorrells M E, Baum M. Isolation of EST derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet, 2002, 104: 399–407
[21] Lincoln S, Daly M, Lander E. Constructing genetic maps with Mapmaker/EXP3.0. Whitehead Institute Techn Rep 3rd edn. Cambridge, Masachussetts, USA: Whitehead Institute, 1992
[22] Sourdille P, Singh S, Cadalen T. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics, 2004, 4: 12–25
[23] Moseman J G, Nevo E, El-Morshidy M A, Zohary D. Resistance of Triticum dicoccoides collected in Israel to infection with Erysiphe graminis tritici. Euphytica, 1984, 33: 41–47
[24] Nevo E, Korol A B, Beiles A, Fahima T. Evolution of Wild Emmer and Wheat Improvement: Population Genetics, Genetic Resources, and Genome Organization of Wheat’s Progenitor, Triticum dicoccoides. Berlin/Heidelberg, Germany: Springer, 2002
[25] Xie W L, Nevo E. Wild emmer: genetic resources, gene mapping and potential for wheat improvement. Euphytica, 2008, 164: 603–614
[26] Ceoloni C, Del Signore G, Pasquini M, Testa A. Transfer of mildew resistance from Triticum longissimum into wheat by ph1 induced homoeologous recombination. In: Miller T E, Koebner R M D, eds. Proc 7th Intl Wheat Genetics Symp IPSR, Cambridge, UK, 1988. pp 221–226
[27] Cenci A, D’Ovidio R, Tanzarella O A, Ceoloni C, Porceddu E. Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor Appl Genet, 1999, 98: 448–454
[28] Wang C Y, Ji W Q, Zhang G S, Wang Q Y, Cai D M, Xue X Z. SSR marker and preliminary chromosomal location of a powdery mildew resistance gene in common wheat germplasm N9134. Acta Agron Sin (作物学报), 2007, 33(1): 163–166
[29] Chen X, Luo Y, Xia X, Xia L, Chen X, Ren Z, He Z, Jia J, Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breed, 2005, 124: 225–228
[30] Nevo E, Gerechter-Amitai Z K, Beiles A, Golenberg E M. Resistance of wild wheat to stripe rust: Predictive method by ecology and allozyme genotypes. Plant Syst Evol, 1986, 153: 13–30
[31] Fahima T, R?der M, Grama A, Nevo E. Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theor Appl Genet, 1998, 96: 187–195
[32] Nevo E, Gerechter-Amitai Z K, Beiles A. Resistance of wild emmer wheat to stem rust: Ecological, pathological and allozyme associations. Euphytica, 1991, 153: 121–130
[33] Avivi L. High grain protein content in wild tetraploid wheat Triticum dicoccoides Korn. In: Ramanujam S ed. Proc 5th Intel Wheat Genet Symp. Vol.1. New Delhi, India, 1979. pp 372–380
[1] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[2] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[3] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[4] 陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位[J]. 作物学报, 2019, 45(10): 1503-1510.
[5] 薛延桃,陆平,史梦莎,孙昊月,刘敏轩,王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究[J]. 作物学报, 2019, 45(10): 1511-1521.
[6] 黄聪,李晓方,李定国,林忠旭. 利用陆地棉MAGIC群体定位产量、生育期和株高性状的QTL[J]. 作物学报, 2018, 44(9): 1320-1333.
[7] 刘天鹏,董孔军,董喜存,何继红,刘敏轩,任瑞玉,张磊,杨天育. 12C6+离子束辐照糜子诱变突变群体的构建与SSR分析[J]. 作物学报, 2018, 44(01): 144-156.
[8] 吴秋红,陈永兴,李丹,王振忠,张艳,袁成国,王西成,赵虹,曹廷杰,刘志勇. 利用SNP芯片和BSA分析规模化定位小麦抗白粉病基因[J]. 作物学报, 2018, 44(01): 1-14.
[9] 王建花,张耀文,程须珍,王丽侠. 绿豆分子遗传图谱构建及若干农艺性状的QTL定位分析[J]. 作物学报, 2017, 43(07): 1096-1102.
[10] 宫希,蒋云峰,徐彬杰,乔媛媛,华诗雨,吴旺,马建,周小鸿,祁鹏飞,兰秀锦. 利用普通六倍体小麦和西藏半野生小麦杂交衍生的重组自交系定位小麦芒长QTL[J]. 作物学报, 2017, 43(04): 496-500.
[11] 付必胜,刘颖,张巧凤,吴小有,高海东,蔡士宾,戴廷波,吴纪中. 与小麦抗白粉病基因Pm48紧密连锁分子标记的开发[J]. 作物学报, 2017, 43(02): 307-312.
[12] 孙子淇,张新友,徐静,张忠信,刘华,严玫,董文召,黄冰艳,韩锁义,汤丰收,刘志勇. 河南省审定花生品种的指纹图谱构建[J]. 作物学报, 2016, 42(10): 1448-1461.
[13] 乔麟轶,常建忠,郭慧娟,高建刚,郑军,畅志坚. 小麦全基因组NBS类R基因分析及2AL染色体NBS-SSR特异标记开发[J]. 作物学报, 2016, 42(06): 795-802.
[14] 曹廷杰,陈永兴,李丹,张艳,王西成,赵虹,刘志勇. 河南小麦新育成品种(系)白粉病抗性鉴定与分子标记检测[J]. 作物学报, 2015, 41(08): 1172-1182.
[15] 秦金燕,李在峰,闫晓翠,苏集华,姚占军,刘大群. 小麦抗病品系5R625抗叶锈病基因的分子鉴定[J]. 作物学报, 2015, 41(04): 651-657.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!