欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (5): 768-777.doi: 10.3724/SP.J.1006.2009.00768

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

强优势玉米杂交种雌穗发育期间的基因表达谱动态及重要功能基因

李波,张登峰,贾冠清,张体付,戴景瑞,王守才*   

  1. 中国农业大学国家玉米改良中心/农业部基因组学与遗传改良重点实验室/北京作物遗传改良重点实验室,北京100193
  • 收稿日期:2008-09-16 修回日期:2009-02-15 出版日期:2009-05-12 网络出版日期:2009-03-20
  • 通讯作者: 王守才,010-62732406
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2004AA211120和2007CB109003),国家高技术研究发展计划(863计划)项目(2004AA211120和2007AA10Z172)资助。

Gene Expression Profile and Main Function Genes during Ear Development in a Highly Heterotic Hybrid of Maize

LI Bo,ZHANG Deng-Feng,JIA Guan-Qing,ZHANG Ti-Fu,DAI Jing-Rri,WANG Shou-Cai*   

  1. National Maize Improvement Center of China/Key Laboratory of Crop Genomics and Genetic Improvement of Agriculture Ministry/Key Laboratory of Genetic Improvement of Beijing City;China Agricultural University,Beijing 100193,China
  • Received:2008-09-16 Revised:2009-02-15 Published:2009-05-12 Published online:2009-03-20
  • Contact: WANG Shuo-Cai,010-62732406

摘要:

利用基因芯片杂交方法,检测强优势玉米杂交种(C8605-2×W1445)雌穗发育过程中的基因表达动态,以期为进一步研究雌穗发育的分子机制提供证据。在雌穗到达小穗分化期之后8 d内,有671个基因的表达水平发生显著变化,主要表现出4种不同的表达模式。这些差异表达的基因涉及代谢、发育、刺激应答、细胞信号转导、物质运输等多个方面。细胞分裂基因、细胞壁结构和修饰蛋白基因在雌穗发育过程中大多表现为上调表达,可能对雌穗细胞的分化和果穗性状的形成产生重要影响。蛋白激酶、细胞信号转导以及转录因子基因等上游的信号传输和调控基因在雌穗的发育中也可能具有重要作用。

关键词: 芯片, 基因表达, 雌穗, 发育, 玉米

Abstract:

The development of ears is mostly responsible for the yield of maize (Zea mays L.), however, the molecular basis is unclear. To disclose the differential expression genes involved in the development of maize ear and their expression patterns, the gene expression at genome level of a highly heterotic hybrid (C8605-2×W1445) was detected from ear spikelet differentiation initiation to the later 8 d using microarrays with approximately 58 000 probes. The result of microarray analysis was verified using quantitative real-time PCR. A total of 671 genes expressed differentially which consisted of four expression patterns. These genes were involved in several biological processes, such as metabolism, development, responses to stimulus, cell signal transduction, and transport. Most genes for cell division, cell wall structure, and the modified protein of cell wall structure were identified to be upregulated during the ear development. Thus, these genes may play important roles in cell differentiation and formation of agronomic traits in maize ears. Moreover, genes for protein kinase, signal transduction, and transcription factors, which are involved in signal transduction and regulatory processes, may also take great functions in the development of maize ears.

Key words: Microarray, Gene expression, Ear, Development, Maize


[1] Schnable P S, Hochholdinger F, Nakazono M. Global expression profiling applied to plant development. Curr Opin Plant Biol, 2004, 7: 50–56

[2] Krizek B A, Meyerowitz E M. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development, 1996, 122: 11–22

[3] Ferrándiz C, Liljegren S J, Yanofsky M F. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science, 2000, 289: 436–438

[4] Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S. Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell, 2003, 15: 1591–1604

[5] Marathe R, Guan Z, Anandalakshmi R, Zhao H, Dinesh-Kumar S P. Study of Arabidopsis thaliana resistome in response to cucumber mosaic virus infection using whole genome microarray. Plant Mol Biol, 2004, 55: 501–520

[6] Price J, Laxmi A, Martin S K S, Jang J C. Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell, 2004, 16: 2128–2150

[7] Kreps J A, Wu Y, Chang H S, Zhu T, Wang X, Harper J F. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol, 2002, 130: 2129–2141

[8] Grimanelli D, Perotti E, Ramirez J, Leblanc O. Timing of the maternal-to-zygotic transition during early seed development in maize. Plant Cell, 2005, 17: 1061–1072

[9] Wang Z, Liang Y, Li C, Xu Y, Lan L, Zhao D, Chen C, Xu Z, Xue Y, Chong K. Microarray analysis of gene expression involved in anther development in rice (Oryza sativa L.). Plant Mol Biol, 2005, 58: 721–737

[10] Lan L F, Chen W, Lai Y, Suo J F, Kong Z S, Li C, Lu Y, Zhang Y J, Zhao X Y, Zhang X S, Zhang Y S, Han B, Cheng J, Xue Y B. Monitoring of gene expression profiles and isolation of candidate genes involved in pollination and fertilization in rice (Oryza sativa L.) with a 10K cDNA microarray. Plant Mol Biol, 2004, 54: 471–487

[11] Birchler J A, Auger D L, Riddle N C. In search of the molecular basis of heterosis. Plant Cell, 2003, 15: 2236–2239

[12] Swanson-Wagner R A, Jia Y, DeCook R, Borsuk L A, Nettleton D, Schnable P S. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbreds. Proc Natl Acad Sci USA, 2006, 103: 6805-6810

[13] Meyer S, Pospisil H, Scholten S. Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern. Plant Mol Biol, 2007, 63: 381–391

[14] Uzarowska A, Keller B, Piepho H P, Schwarz G, Ingvardsen C, Wenzel G, Lubberstedt T. Comparative expression profiling in meristems of inbred-hybrid triplets of maize based on morphological investigations of heterosis for plant height. Plant Mol Biol, 2007, 63: 21–34

[15] Wu H, Kerr K, Cui X, Churchill G A. MAANOVA: A software package for the analysis of spotted cDNA microarray experiments. In: Parmigiani G, Garett E S, Irizarry R A, Zeger S L, eds. The Analysis of Gene Expression Data: Methods and Software. Heidelberg: Springer, 2003. pp 313–341

[16] Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Ser B Stat Methodol, 1995, 57: 289–300

[17] Eisen M B, Spellman P T, Brown P O, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA, 1998, 95: 14863–14868

[18] Fuchs I, Philippar K, Ljung K, Sandberg G, Hedrich R. Blue light regulates an auxin-induced K+-channel gene in the maize coleoptile. Proc Natl Acad Sci USA, 2003, 100: 11795–11800

[19] Darley C P, Forrester A M, McQueen-Mason S J. The molecular basis of plant cell wall extension. Plant Mol Biol, 2001, 47: 179–195

[20] Campbell P, Braam J. Xyloglucan endotransglycosylases: Diversity of genes, enzymes and potential wall-modifying functions. Trends Plant Sci, 1999, 4: 361–366

[21] Rose J K C, Bennett A B. Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends Plant Sci, 1999, 4: 176–183

[22] Villemur R, Haas N A, Joyce C M, Snustad D P, Silflow C D. Characterization of four new β-tubulin genes and their expression during male flower development in maize (Zea mays L.). Plant Mol Biol, 1994, 24: 295–315

[23] Schr?der J, Stenger H, Wernicke W. α-Tubulin genes are differentially expressed during leaf cell development. Plant Mol Biol, 2001, 45: 723–730

[24] Frattini M, Morello L, Breviario D. Rice calcium-dependent protein kinase isoforms OsCDPK2 and OsCDPK11 show different responses to light and different expression patterns during seed development. Plant Mol Biol, 1999, 41: 753–764

[25] Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J, 2000, 23:319–327

[26] Xiong L, Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 2003, 15: 745–759

[27] Calderini O, B?gre L, Vicente O, Binarova P, Heberle-Bors E, Wilson C. A cell cycle regulated MAP kinase with a possible role in cytokinesis in tobacco cells. J Cell Sci, 1998, 111: 3091–3100

[28] Leyser O. Molecular genetics of auxin signaling. Annu Rev Plant Biol, 2002, 5: 377–398

[29] Tzeng T Y, Yang C H. A MADS box gene fromlily (Lilium longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant Cell Physiol, 2001, 42: 1156–1168

[30] Yu H, Xu Y, Tan E L, Kumar P P. AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proc Natl Acad Sci USA, 2002, 99: 16336–16341

[31] Mizukami Y, Fischer R L. Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci USA, 2000, 97: 942–947

[32] Moons A. Osgstu3 and osgstu4, encoding tau class glutathione S-transferases, are heavy metal- and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Lett, 2003, 553: 427–432

[33] Schirmer EC, Lindquist S and Vierling E. An Arabidopsis heat shock protein complements a thermotolerance defect in yeast. Plant Cell, 1994, 6: 1899–1909

[34] Lee Y J, Nagao R T, Key J L. A Soybean 101-kD heat shock protein complements a yeast HSP704 deletion mutant in acquiring thermotolerance. Plant Cell, 1994, 6: 1889–1897

[35] Collins G G, Nie X, Saltveit M E. Heat shock proteins and chilling sensitivity of mung bean hypocotyls. J Exp Bot, 1995, 46: 795–802
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[10] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[11] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[14] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[15] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!