欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (5): 940-945.doi: 10.3724/SP.J.1006.2009.00940

• 研究简报 • 上一篇    下一篇

利用斑茅cDNA芯片研究甘蔗受黑穗病菌侵染后基因差异表达

阙友雄,许莉萍*,林剑伟,徐景升,张积森,张木清,陈如凯   

  1. 福建农林大学/农业部甘蔗遗传改良重点开放实验室,福建福州350002
  • 收稿日期:2008-09-01 修回日期:2008-12-13 出版日期:2009-05-12 网络出版日期:2009-03-23
  • 通讯作者: 徐莉萍,E-mail:xlpmail@yahoo.com.cn
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2007AA100701),农业部引进国际先进农业科学技术计划(948计划)项目(2006-G37),国家自然科学基金项目(30170639),福建省科技厅国家科技项目备案(F2007AA100701)资助。

Application of E.arundinaceus cDNA Microarray in the Study of Differentially Expressed Genes Induced by U.sitaminea

QUE You-Xiong,XU Li-Ping*,LIN Jian-Wei,XU Jing-Sheng,ZHANG Ji-Sen,ZHANG Mu-Qing,CHEN Ru-Kai   

  1. Key Lab of Genetic Improvement for Sugarcane,Ministry of Agriculture,Fujian Agriculture and Forestry University,Fuzhou 350002,China
  • Received:2008-09-01 Revised:2008-12-13 Published:2009-05-12 Published online:2009-03-23
  • Contact: XU Li-Ping,E-mail:xlpmail@yahoo.com.cn

摘要:

为了解甘蔗抗黑穗病的分子机制,利用斑茅干旱胁迫cDNA芯片检测了甘蔗受黑穗病菌胁迫后的基因差异表达。经杂交,在cDNA芯片的3 860个模板中,有效差异表达(Ratio2.00.5)的基因为101个,其中上调55个,下调46个。部分基因的定量PCR验证表明,芯片杂交结果可靠。上调表达基因经测序、冗余序列剔除,一共获得36unique ESTs。已知功能的22个上调表达基因,涉及多条生理代谢途径,如光合作用、离子转运和核酸代谢途径;以及多种分子水平的进程,如基因转录、蛋白质合成与修饰以及细胞信号转导等。另外,还检测到14个未知功能基因。结果表明,甘蔗对黑穗病的抗性具有复杂的机制。本研究为解释甘蔗受黑穗病菌胁迫后的基因差异表达及其网络构建奠定了基础,还可以为今后系统研究甘蔗对生物与非生物胁迫的响应机制提供技术支持。

关键词: 甘蔗, 黑穗病菌, 斑茅, cDNA芯片, 差异表达基因

Abstract:

RNAs of sugarcane leaves with (treatment) or without (control) the infection of U. scitaminea were extracted, subjected to hybridization of cDNA microarray based on E. arundinaceus cDNA sequence and further validated by Real-time qPCR. There were about 101 differentially expressed ESTs (with ratio value ≥2.0 or ≤0.5) among 3 860 genes sets in a microarray plate, with 55 up-regulated, and 46 down-regulated by U. scitaminea. After sequencing and redundant sequences elimination, we totally obtained 36 unique ESTs up-regulated after the infection of U. scitaminea. Among them, 22 were involved in several metabolism pathways, such as photosynthesis, ion transport and nucleotide metabolism, as well as some genes related to transcription factors, proteins synthesis and modulation, and cellular signal transduction. And the function of the 14 remaining ESTs was unknown. In conclusion, the molecular mechanism of sugarcane smut resistance is complex. This investigation would provide an understanding for differentially expressed genes induced by U. scitaminea and set a mode for the systematic research on molecular mechanism of sugarcane responses to biotic and abiotic stress.

Key words: Sugarcane, Ustilago scitaminea, E.arundinaceus, cDNA microarray, Differentially expressed gene


[1] Orlando B H, Thomma B P, Carmona E, Borroto C J, Pujol M, Arencibia A, Lopez J. Identification of sugarcane genes induced in disease-resistant somaclones upon inoculation with Ustilago scitaminea or Bipolaris sacchari. Plant Physiol Biochem, 2005, 43: 1115–1121

[2] Que Y X, Lin J W, Zhang J S, Ruan M H, Xu L P, Zhang M Q. Molecular cloning and characterization of a non-TIR-NBS-LRR type disease resistance gene analogue from sugarcane. Sugar Tech, 2008, 10: 71–73

[3] Que Y-X(阙友雄), Xu L-P(许莉萍), Lin J-W(林剑伟), Chen R-K(陈如凯). Isolation and characterization of NBS-LRR resistance gene analogs from sugarcane. Acta Agron Sin (作物学报), 2009, 35(4):1–9 (in Chinese with English abstract)

[4] Fan J-J(樊金娟), Zhao K-J(赵开军), Xu Z-J(徐正进). Application of cDNA microarrays in the study of plant functional genomics. Biotechnol Bull (生物技术通报), 2004, (3): 26–29(in Chinese with English abstract)

[5] Reymond P. DNA microarray and plant defense. Plant Physiol Biochem, 2001, 39: 313–321

[6] Girke T, Todd J, Ruuska S, White J, Benning C, Ohlrogge J. Microarray analysis of developing Arabidopsis seeds. Plant Physiol, 2000, 124: 1570–1581

[7 ]Liu W-L(刘文龙), Zhang J-S(张积森), Rao J(饶进), Cai Q-H(蔡秋华), Weng X-Y(翁笑艳), Ruan M-H(阮妙鸿), Que Y-X(阙友雄), Chen R-K(陈如凯). Construction and analysis of suppression subtractive hybridization library for Saccharum arundinaceum Retz. leaves exposed to drought stress. Acta Agron Sin (作物学报), 2007, 33(6): 961–967(in Chinese with English abstract)

[8] Que Y-X(阙友雄), Xu L-P(许莉萍), Lin J-W(林剑伟), Chen T-S(陈天生), Chen R-K(陈如凯), Li Y-L(李依龙). Establishment of evaluation system of smut resistance for sugarcane varieties. J Plant Genet Resour (植物遗传资源学报), 2006, 7(1): 18–23(in Chinese with English abstract)

[9] Que Y X, Li W, Xu J S, Xu L P, Zhang M Q Chen R K. A simple and versatile protocol for isolation of RNA from plant, fungi and animal. J Agric Sci Technol, 2008, 2: 63–65

[10] Que Y X(阙友雄). Molecular response to the interaction between sugarcane and Ustilago scitaminea. PhD dissertation of Fujian Agriculture and Forestry University, 2008(in Chinese with English abstract)

[11] Wool I G. Extraribosomal functions of ribosomal proteins. Trends Biochem Sci, 1996, 21: 164–165

[12] Dong X-L(董晓丽), Zhou J-T(周集体), Du C-H(杜翠红), Yan B(严滨). The progresses of studies in molecular biology of RubisCO. High Technol Lett (高技术通讯), 2001, 12:95–97(in Chinese with English abstract)

[13] Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai WX, Zhu L H, Fauquet C, Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Science, 1995, 270: 1804–1806

[14] Kim H S, Delaney T P. Arabidopsis SON1 is an F-box protein that regulates a novel induced defense independent of both salicylic acquired resistance. Plant Cell, 2002, 14: 1469–148

[15] Ni Z-L(倪张林), Wei J-M(魏家绵). The structure and catalytic mechanism of ATP synthase. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2003, 29(5): 367–374(in Chinese with English abstract)

[16] Ming Z-H(明镇寰). Information processing by RNA polymerase during RNA chain elongation. Hereditas (遗传), 2000, 22(1): 47–50(in Chinese with English abstract)

[17] Becker F, Buachfeld E, Schell J, Bachmair A. Altered response to viral infection by tobacco plant perturbed in ubiquitin system. Plant J, 1993, 3: 875–881

[18] Zhang J S(张积森), Li W(李伟), Que Y X(阙友雄), Ruan M H(阮妙鸿), Zhang M Q(张木清), Chen R K((陈如凯). Cloning of two house-keeping genes from Erianthus arundinaceus and the application in cDNA microarray. J Trop Subtrop Bot (热带亚热带植物学报), 2007, 15(4): 277–283

[19] Yoshijiro N, Mari N, Motoaki S, Junko I, Maiko N, Asako K, Akiko E, Tetsuya S, Masakazu S, Masatomo K, Yukio T, Pyoyun P and Kazuo S. The cDNA microarray analysis using an Arabidopsis pad3 mutant reveals the expression profiles and classification of genes induced by Alternaria brassicicola attack. Plant Cell Physiol, 2003, 44: 377–387

[20] Tao Y, Xie Z Y, Chen W Q, Jane G, Chang H S, Han B, Zhu T, Zou G Z, Fumiaki K. Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell, 2003, 15: 317–330

[21] Chen W Q, Nicholas J P, Jane G, Fumiaki K, Chang H S,Thomas E, Felix M, Luan S, Zou G Z, Steve A W, Paul R B, Tao Y, Xie Z Y, Chen X, Steve L, Joel A K, Jeffery F H, Azzedine S A, Brigitte M M, Manfred H, Kappei K, Thomas H, Jeffery L D, Wang X, Zhu T. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell, 2002, 14: 559–574

[22] Horvath D P, Schaffer R, West M, Wisman E. Arabidopsis microarrays identify conserved and differentially expressed genes involved in shoot growth and development from distantly related plant species. Plant J, 2003, 34: 125–134
[1] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[2] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[3] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[4] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[5] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[6] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[7] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[8] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[9] 黄文功, 姜卫东, 姚玉波, 宋喜霞, 刘岩, 陈思, 赵东升, 吴广文, 袁红梅, 任传英, 孙中义, 吴建忠, 康庆华. 亚麻响应低钾胁迫转录谱分析[J]. 作物学报, 2021, 47(6): 1070-1081.
[10] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[11] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[12] 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382.
[13] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
[14] 仓晓燕, 夏红明, 李文凤, 王晓燕, 单红丽, 王长秘, 李婕, 张荣跃, 黄应昆. 甘蔗优良品种(系)对黑穗病的抗性评价[J]. 作物学报, 2021, 47(11): 2290-2296.
[15] 张海, 程光远, 杨宗桃, 王彤, 刘淑娴, 商贺阳, 赵贺, 徐景升. 甘蔗ScCRT1基因克隆及其应答SCMV侵染分子机制的研究[J]. 作物学报, 2021, 47(1): 94-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!