欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (5): 946-951.doi: 10.3724/SP.J.1006.2009.00946

• 研究简报 • 上一篇    下一篇

内生真菌对甜菜主要农艺性状及氮糖代谢关键酶活性的影响

史应武12,娄恺2*,李春1   

  1. 1石河子大学农学院/新疆兵团化工绿色过程重点实验室,新疆石河子832003;2新疆农科院微生物应用研究所,新疆乌鲁木齐830091
  • 收稿日期:2008-11-13 修回日期:2009-02-17 出版日期:2009-05-12 网络出版日期:2009-03-23
  • 通讯作者: 娄恺,E-mail:loukai02@mail.tsinghua.edu.cn;Tel:0991-4521590
  • 基金资助:

    本研究由引进国际先进农业科学技术计划(948计划)项目(2006-G62),国家科技基础条件平台项目(2005DKA21201-12)资助。

Effects of Endophytic Fungus on Sugar Content and Key Enzymes Activity in Nitrogen and Sugar Metabolism of Sugar Beet(Beta vulgaris L.)

SHI Ying-Wu12,LOU Kai2*,LI Chun1   

  1. 1Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Agriculture College of Shihezi University,Shihezi 832003,china;2Institute of Microbiology,Xinjiang Academy of Agriculture Science,Urumqi 830091,China
  • Received:2008-11-13 Revised:2009-02-17 Published:2009-05-12 Published online:2009-03-23
  • Contact: LOU Kai,E-mail:loukai02@mail.tsinghua.edu.cn;Tel:0991-4521590

摘要:

采用内生真菌F11液浸种、喷叶及灌根处理方法,调查其对甜菜栽培品种KWS2409的主要农艺性状及对甜菜氮、糖代谢关键酶即硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、蔗糖合酶(SS)和蔗糖磷酸合酶(SPS)活性的影响。结果表明,内生真菌F11菌株对甜菜的含糖量有明显的提高作用,其中以灌根处理效果最好,其叶鲜重、叶绿素含量、单根重、含糖率和产糖量的平均值分别提高了66.67%47.42%6.96%17.46%25.63%。在整个生育期,内生真菌F11显著提高了氮糖代谢酶活性,其中NRGS活力分别呈“M”型双峰曲线和抛物线型变化,而SSGS活力呈单峰曲线变化,后期根部SS合成活力明显高于分解方向活力,生育前期SPS活力高于后期。叶丛形成期达到最高峰,说明NRGSSSSPS活性的增强是甜菜含糖量升高的主要生理原因。

关键词: 甜菜, 内生真菌F11, 氮、糖代谢关键酶

Abstract:

We investigated the agronomic traits and determined the activity of key enzymes in sugar and nitrogen metabolisms in beet leaf and root with treatments of by using Plectosphaerella cucumerina F11 solution seed soaking, leaf spraying and root watering. The results showed that the strain F11 obviously promoted growth of beet seedlings, the effect with the better in root watering treatment than in others. the leaf fresh weight,content of chlorophyll, fresh weight per root, sugar content and sugar yield of beet increased significantly (P<0.05) by 66.67%, 47.42%, 6.96%, 17.46%, and 25.63%, respectively; F11 enhanced evidently the activities of key enzymes in sugar and nitrogen metabolisms of beet during whole growth period. The changes of activities of nitrate reductase (NR) and glutamina synthetase (GS) presented the curves of M-shape and parabola shape, respectively. The changes of activities of sucrose synthase (SS) and sucrose phosphate synthase (SPS) in beet displayed the single peak curve. The synthesis activity was much higher than the decomposition activity for SS in roots of beet at late growth stage. The activity of SPS was higher at early growth stage than at late growth stage, and the activity of SPS was the highest during phyllome formation period. It was concluded that the strain F11 not only enhanced activities of key enzymes in sugar and nitrogen metabolisms of beet, but also promoted the growth, yield and sugar accumulation of beet.

Key words: Sugar beet, Endophytic fungus F11, Key enzymes of nitrogen and sugar metabolisms


[1] Li W-S(李文生), Yan P(阎品), Abei D-L(阿拜都拉), Yang K-G(杨夸鼓), Ding X-Z(丁巷柱). The reasons and strategies of the sugar content decreased of sugarbeet in Tacheng Basin, Xinjiang. Sugar Crops China (中国糖料), 2002, (1): 42–44(in Chinese)

[2] Hadacek F, Kraus G F. Plant root carbohydrates affect growth behaviour of endophytic microfungi. FEMS Microbiol Ecol, 2002, 41: 161–170

[3] Vila-Aiub M M, Gundel P E, Ghersa C M. Fungal endophyte infection changes growth attributes in Lolium multiflorum Lam. Austral Ecol, 2005, 30: 49–57

[4] Ait Barka E, Gognies S. Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control, 2002, 24: 135–142

[5] Jacobs M J. Enumeration, location, characterization of endophytic bacteria within sugar beet roots. Can J Bot, 1985, 63: 1262–1265

[6] Larran S, Monaco C, Alippi H. Endophytic fungi in beet (Beta vulgaris var. esculenta L.) leaves. Adv Hort Sci, 2004, (4): 193–196

[7] Yan C P, Ma F M, Gao J G. Research on glutamate synthase activity in sugar beet (Beta vulgaris L.). J Northeast Agric Univ, 1998, 5(1): 5–11

[8] Zhao Y(赵越), Wei Z-M(魏自民), Li C(李成), Ma F-M(马凤鸣). The relationship between the key enzyme of nitrogen metabolism and sugarbeet. J Northeast Agric Univ (东北农业大学学报), 2003, 34(4): 368–371(in Chinese with English abstract)

[9] Li Cai-M(李彩凤), Ma F-M(马凤呜), Zhao Y(赵越), Li W-H(李文华). Effects of nitrogen forms on key enzyme activities and related products in sugar and nitrogen metabolism of sugar beet (Beta vulgaris L.). Acta Agron Sin (作物学报), 2003, 29(1): 128–132(in Chinese with English abstract)

[10] Yu H-B(于海彬), Cai B(蔡葆), Sun G-Q(孙国琴), Wang Q(王秋). The research of NR activity. China Sugar Beet (中国糖料), 1993, (3): 18–23 (in Chinese with English abstract)

[11] Miflin B J, Lea P J. Amino acid metabolism. Annu Rev Plant Physiol, 1977, 28: 299–329

[12] Liu Q(刘强), Peng J-W(彭建伟), Rong X-M(荣湘民), Xie G-X(谢桂先), Zhu H-M(朱红梅). Effect of carboxymethyl chitosan on nitrogen metabolism of rice. Plant Nutr Fert Sci (植物营养与肥料学报), 2007, 13(4): 597–601(in Chinese with English abstract)

[13] Zhao Y(赵越), Wei Z-M(魏自民), Ma F-M(马凤鸣). Influence of ammoniacal nitrogen on sucrose synthase and sucrose phosphate synthase in sugar beet. Sugar Crops China (中国糖料), 2003, (3): 1–5(in Chinese)

[14] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248–254

[15] Zhang X Z(张宪政). Research Methods on Crop Physiology (作物生理学研究方法). Beijing: Agriculture Press, 1992. p 142(in Chinese)

[16] Shao J W, Cai B. Sugar Beet Physiology (甜菜生理学). Beijing: Agricultural Press, 1991. pp 181–196(in Chinese)

[17] Naik M S, Abrol Y P, Nair T V R. Nitrate assimilation its regulation and relationship to reduced nitrogen in higher plants. Phytochemistry, 1982, 21: 495–504

[18] Tang Y-W(汤玉玮), Lin Z-W(林振武), Chen J-X(陈敬祥). Study on the correlation between nitrate reductase activity and nitrogen respinsein crop plant and its application in biochemical plant breeding. Sci Agric Sin (中国农业科学), 1985, 18(6): 39–45 (in Chinese with English abstract)

[19] Zhao Y(赵越), Wei Z-M(魏自民), Li C(李成), Ma F-M(马凤鸣). The relationship between the key enzyme of nitrogen metabolism and sugar beet yield and quantity. J Northeast Agric Univ (东北农业大学学报), 2003, 34(4): 368–371(in Chinese with English abstract)

[20] Onkar S, Kanwar R S. Nitrate reductase activity—a growth factor of Sugar cane leaves. Indian Sugar, 1989, 39: 159–163

[21] Mack G. Glutamine synthetase isoenzymes, oligomers and subunits from hairy roots of Beta vulgaris L. var. lutea. Planta, 1998, 205: 113–120

[22] Pavlinova O A. Sucrose synthesizing enzymes of the sugar beet roots. Fiziol Rast, 1970, 17: 295–301

[23] Shen D-L(沈德龙), Feng Y-J(冯永君), Song W(宋未). Effect of Pantoea agglomerans on the distribution of photosynthate in flag leaf and spike of rice sugar beet. Prog Nat Sci (自然科学进展), 2002, 12(8): 863–865(in Chinese with English abstract)

[24] Holland M A. Occam’s razor applied to hormonology: are cytokinnins produced by plants. Plant Physiol, 1997, 115: 865–868

[25] Xu Q-M(徐亲民), Gao J(高杰), Jin Z-L(金智俐), Huang J-D(黄爱娣). The microorganisms produce sugar by sugar crops agent. Patent: CN 971261660, 1997-12-31 (in Chinese with English abstract)
[1] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[2] 张加康, 李斐, 史树德, 杨海波. 内蒙古地区甜菜临界氮浓度稀释模型的构建及应用[J]. 作物学报, 2022, 48(2): 488-496.
[3] 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135.
[4] 黄春燕,苏文斌,张少英,樊福义,郭晓霞,李智,菅彩媛,任霄云,宫前恒. 施钾量对膜下滴灌甜菜光合性能以及对产量和品质的影响[J]. 作物学报, 2018, 44(10): 1496-1505.
[5] 李智,李国龙,张永丰,于超,苏文斌,樊福义,张少英. 膜下滴灌条件下高产甜菜灌溉的生理指标[J]. 作物学报, 2017, 43(11): 1724-1730.
[6] 李阳阳,费聪,崔静,王开勇,马富裕,樊华. 滴灌甜菜对块根膨大期水分亏缺的补偿性响应[J]. 作物学报, 2016, 42(11): 1727-1732.
[7] 喻时周,杨成龙,郭建春,段瑞军. 海马齿甜菜碱醛脱氢酶基因克隆、高效表达及酶学特性分析[J]. 作物学报, 2016, 42(10): 1569-1574.
[8] 王茂芊,李博,王华忠. 甜菜遗传连锁图谱初步构建[J]. 作物学报, 2014, 40(02): 222-230.
[9] 李伟,申家恒,郭德栋. 栽培甜菜中央细胞受精前后的超微结构[J]. 作物学报, 2014, 40(01): 166-173.
[10] 李伟,申家恒,郭德栋. 栽培甜菜助细胞退化进程的超微结构观察[J]. 作物学报, 2013, 39(12): 2220-2227.
[11] 李枝梅,窦海鸥,卫丹丹,孟庆伟,CHEN Tony Huihuang,杨兴洪. codA基因提高番茄植株的耐热性[J]. 作物学报, 2013, 39(11): 2046-2054.
[12] 侯鹏飞,马俊青,赵鹏飞,张欢玲,赵会杰,刘华山,赵一丹,汪月霞. 外源甜菜碱对干旱胁迫下小麦幼苗叶绿体抗氧化酶及psbA基因表达的调节[J]. 作物学报, 2013, 39(07): 1319-1324.
[13] 马兰,杜洪岩,李荣田. 甜菜单体附加系M14种子形成方式[J]. 作物学报, 2013, 39(03): 381-388.
[14] 陈玉珍,张少英,康振生,韩青梅,白朕卿. 甜菜-甜菜坏死黄脉病毒互作过程中过氧化氢的积累与分布[J]. 作物学报, 2012, 38(05): 865-870.
[15] 石晓艳, 曾彦达, 李世龙, 王玉波, 马凤鸣, 刁志伟. 甜菜亚硝酸还原酶基因(NiR)的克隆与表达分析[J]. 作物学报, 2011, 37(08): 1406-1414.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!