作物学报 ›› 2009, Vol. 35 ›› Issue (5): 946-951.doi: 10.3724/SP.J.1006.2009.00946
史应武12,娄恺2*,李春1
SHI Ying-Wu12,LOU Kai2*,LI Chun1
摘要:
采用内生真菌F11液浸种、喷叶及灌根处理方法,调查其对甜菜栽培品种KWS2409的主要农艺性状及对甜菜氮、糖代谢关键酶即硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、蔗糖合酶(SS)和蔗糖磷酸合酶(SPS)活性的影响。结果表明,内生真菌F11菌株对甜菜的含糖量有明显的提高作用,其中以灌根处理效果最好,其叶鲜重、叶绿素含量、单根重、含糖率和产糖量的平均值分别提高了66.67%、47.42%、6.96%、17.46%和25.63%。在整个生育期,内生真菌F11显著提高了氮糖代谢酶活性,其中NR和GS活力分别呈“M”型双峰曲线和抛物线型变化,而SS和GS活力呈单峰曲线变化,后期根部SS合成活力明显高于分解方向活力,生育前期SPS活力高于后期。叶丛形成期达到最高峰,说明NR、GS、SS和SPS活性的增强是甜菜含糖量升高的主要生理原因。
[1] Li W-S(李文生), Yan P(阎品), Abei D-L(阿拜都拉), Yang K-G(杨夸鼓), Ding X-Z(丁巷柱). The reasons and strategies of the sugar content decreased of sugarbeet in Tacheng Basin, Xinjiang. Sugar Crops China (中国糖料), 2002, (1): 42–44(in Chinese) [2] Hadacek F, Kraus G F. Plant root carbohydrates affect growth behaviour of endophytic microfungi. FEMS Microbiol Ecol, 2002, 41: 161–170 [3] Vila-Aiub M M, Gundel P E, Ghersa C M. Fungal endophyte infection changes growth attributes in Lolium multiflorum Lam. Austral Ecol, 2005, 30: 49–57 [4] Ait Barka E, Gognies S. Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control, 2002, 24: 135–142 [5] Jacobs M J. Enumeration, location, characterization of endophytic bacteria within sugar beet roots. Can J Bot, 1985, 63: 1262–1265 [6] Larran S, Monaco C, Alippi H. Endophytic fungi in beet (Beta vulgaris var. esculenta L.) leaves. Adv Hort Sci, 2004, (4): 193–196 [7] Yan C P, Ma F M, Gao J G. Research on glutamate synthase activity in sugar beet (Beta vulgaris L.). J Northeast Agric Univ, 1998, 5(1): 5–11 [8] Zhao Y(赵越), Wei Z-M(魏自民), Li C(李成), Ma F-M(马凤鸣). The relationship between the key enzyme of nitrogen metabolism and sugarbeet. J Northeast Agric Univ (东北农业大学学报), 2003, 34(4): 368–371(in Chinese with English abstract) [9] Li Cai-M(李彩凤), Ma F-M(马凤呜), Zhao Y(赵越), Li W-H(李文华). Effects of nitrogen forms on key enzyme activities and related products in sugar and nitrogen metabolism of sugar beet (Beta vulgaris L.). Acta Agron Sin (作物学报), 2003, 29(1): 128–132(in Chinese with English abstract) [10] Yu H-B(于海彬), Cai B(蔡葆), Sun G-Q(孙国琴), Wang Q(王秋). The research of NR activity. China Sugar Beet (中国糖料), 1993, (3): 18–23 (in Chinese with English abstract) [11] Miflin B J, Lea P J. Amino acid metabolism. Annu Rev Plant Physiol, 1977, 28: 299–329 [12] Liu Q(刘强), Peng J-W(彭建伟), Rong X-M(荣湘民), Xie G-X(谢桂先), Zhu H-M(朱红梅). Effect of carboxymethyl chitosan on nitrogen metabolism of rice. Plant Nutr Fert Sci (植物营养与肥料学报), 2007, 13(4): 597–601(in Chinese with English abstract) [13] Zhao Y(赵越), Wei Z-M(魏自民), Ma F-M(马凤鸣). Influence of ammoniacal nitrogen on sucrose synthase and sucrose phosphate synthase in sugar beet. Sugar Crops China (中国糖料), 2003, (3): 1–5(in Chinese) [14] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248–254 [15] Zhang X Z(张宪政). Research Methods on Crop Physiology (作物生理学研究方法). Beijing: Agriculture Press, 1992. p 142(in Chinese) [16] Shao J W, Cai B. Sugar Beet Physiology (甜菜生理学). Beijing: Agricultural Press, 1991. pp 181–196(in Chinese) [17] Naik M S, Abrol Y P, Nair T V R. Nitrate assimilation its regulation and relationship to reduced nitrogen in higher plants. Phytochemistry, 1982, 21: 495–504 [18] Tang Y-W(汤玉玮), Lin Z-W(林振武), Chen J-X(陈敬祥). Study on the correlation between nitrate reductase activity and nitrogen respinsein crop plant and its application in biochemical plant breeding. Sci Agric Sin (中国农业科学), 1985, 18(6): 39–45 (in Chinese with English abstract) [19] Zhao Y(赵越), Wei Z-M(魏自民), Li C(李成), Ma F-M(马凤鸣). The relationship between the key enzyme of nitrogen metabolism and sugar beet yield and quantity. J Northeast Agric Univ (东北农业大学学报), 2003, 34(4): 368–371(in Chinese with English abstract) [20] Onkar S, Kanwar R S. Nitrate reductase activity—a growth factor of Sugar cane leaves. Indian Sugar, 1989, 39: 159–163 [21] Mack G. Glutamine synthetase isoenzymes, oligomers and subunits from hairy roots of Beta vulgaris L. var. lutea. Planta, 1998, 205: 113–120 [22] Pavlinova O A. Sucrose synthesizing enzymes of the sugar beet roots. Fiziol Rast, 1970, 17: 295–301 [23] Shen D-L(沈德龙), Feng Y-J(冯永君), Song W(宋未). Effect of Pantoea agglomerans on the distribution of photosynthate in flag leaf and spike of rice sugar beet. Prog Nat Sci (自然科学进展), 2002, 12(8): 863–865(in Chinese with English abstract) [24] Holland M A. Occam’s razor applied to hormonology: are cytokinnins produced by plants. Plant Physiol, 1997, 115: 865–868 [25] Xu Q-M(徐亲民), Gao J(高杰), Jin Z-L(金智俐), Huang J-D(黄爱娣). The microorganisms produce sugar by sugar crops agent. Patent: CN 971261660, 1997-12-31 (in Chinese with English abstract) |
[1] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[2] | 张加康, 李斐, 史树德, 杨海波. 内蒙古地区甜菜临界氮浓度稀释模型的构建及应用[J]. 作物学报, 2022, 48(2): 488-496. |
[3] | 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135. |
[4] | 黄春燕,苏文斌,张少英,樊福义,郭晓霞,李智,菅彩媛,任霄云,宫前恒. 施钾量对膜下滴灌甜菜光合性能以及对产量和品质的影响[J]. 作物学报, 2018, 44(10): 1496-1505. |
[5] | 李智,李国龙,张永丰,于超,苏文斌,樊福义,张少英. 膜下滴灌条件下高产甜菜灌溉的生理指标[J]. 作物学报, 2017, 43(11): 1724-1730. |
[6] | 李阳阳,费聪,崔静,王开勇,马富裕,樊华. 滴灌甜菜对块根膨大期水分亏缺的补偿性响应[J]. 作物学报, 2016, 42(11): 1727-1732. |
[7] | 喻时周,杨成龙,郭建春,段瑞军. 海马齿甜菜碱醛脱氢酶基因克隆、高效表达及酶学特性分析[J]. 作物学报, 2016, 42(10): 1569-1574. |
[8] | 王茂芊,李博,王华忠. 甜菜遗传连锁图谱初步构建[J]. 作物学报, 2014, 40(02): 222-230. |
[9] | 李伟,申家恒,郭德栋. 栽培甜菜中央细胞受精前后的超微结构[J]. 作物学报, 2014, 40(01): 166-173. |
[10] | 李伟,申家恒,郭德栋. 栽培甜菜助细胞退化进程的超微结构观察[J]. 作物学报, 2013, 39(12): 2220-2227. |
[11] | 李枝梅,窦海鸥,卫丹丹,孟庆伟,CHEN Tony Huihuang,杨兴洪. 转codA基因提高番茄植株的耐热性[J]. 作物学报, 2013, 39(11): 2046-2054. |
[12] | 侯鹏飞,马俊青,赵鹏飞,张欢玲,赵会杰,刘华山,赵一丹,汪月霞. 外源甜菜碱对干旱胁迫下小麦幼苗叶绿体抗氧化酶及psbA基因表达的调节[J]. 作物学报, 2013, 39(07): 1319-1324. |
[13] | 马兰,杜洪岩,李荣田. 甜菜单体附加系M14种子形成方式[J]. 作物学报, 2013, 39(03): 381-388. |
[14] | 陈玉珍,张少英,康振生,韩青梅,白朕卿. 甜菜-甜菜坏死黄脉病毒互作过程中过氧化氢的积累与分布[J]. 作物学报, 2012, 38(05): 865-870. |
[15] | 石晓艳, 曾彦达, 李世龙, 王玉波, 马凤鸣, 刁志伟. 甜菜亚硝酸还原酶基因(NiR)的克隆与表达分析[J]. 作物学报, 2011, 37(08): 1406-1414. |
|