作物学报 ›› 2009, Vol. 35 ›› Issue (5): 952-957.doi: 10.3724/SP.J.1006.2009.00952
赵法茂1,蔡瑞国2,毕建杰3,肖军1,王宪泽3,*
ZHAO Fa-Mao1,CAI Rui-Guo2,BI Jian-Jie3,XIAO Jun1,WANG Xian-Ze3*
摘要:
以70个有代表性的小麦品种,采用SDS聚丙烯酰胺凝胶电泳(SDS-PAGE)方法检测淀粉粒结合SBE IIb的品种间差异;并对SDS-PAGE凝胶中SBE IIb进行回收、复性和酶活性测定。结果表明,淀粉粒结合蛋白(SGP)中分子量为85 kD的SGP-2是与淀粉粒结合的SBE IIb,具有淀粉分支酶活性;SBE IIb从淀粉粒释放并去除SDS后活性立即恢复,其活性高峰出现在花后21 d左右;SBE IIb在小麦籽粒发育早期开始表达,不同发育时期表达量有差异,但其表达图谱在品种间没有差异,即编码SBE IIb的基因位点不具有品种的遗传多态性。
[1] Baga M, Glaze S, Mallard C S, Chibbar R. A starch branching enzyme gene in wheat produces alternatively spliced transcripts. Plant Mol Biol, 1999, 40: 1019–1030 [2] Yao D-N(姚大年), Li B-Y(李保云), Zhu J-B(朱金宝), Liang R-Q(梁荣奇), Liu G-T(刘广田). Study on main starch properties and predictive indexes of noodle quality in common wheat. Sci Agric Sin (中国农业科学), 1999, 32(6): 84–88(in Chinese with English abstract) [3] McCormick K M, Panozzo J F, Hong S H. A swelling power test for selecting potential noodle quality wheats. Aust J Agric Res, 1991, 42: 317–323 [4] Mu-Forster C, Huang R, Powers J R, Harriman R W, Knight M, Singletary G W, Keeling P L, Wasserman B P. Physical association of starch biosynthetic enzymes with starch granules of maize endosperm. Plant Physiol, 1996, 111: 821–829 [5] Satoh H, Nishi A, Yamashita K, Takemoto Y, Tanaka Y, Hosaka Y, Sakurai A, Fujita N, Nakamura Y. Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiol, 2003, 133: 1111–1121 [6] Guan H P, Preiss J. Differentiation of the properties of the branching isozymes from maize (Zea mays). Plant Physiol, 1993, 102: 1269–1273 [7] Morell M K, Blennow A, Hashemi B K, Samuel M S. Differential expression and properties of starch branching nzyme isoforms in developing wheat endosperm. Plant Physiol, 1997, 113: 201–208 [8] Regina A, Kosar H B, Li Z, Pedler A, Mukai Y, Yamamoto M, Gale K, Sharp P J, Morell M K, Rahman S. Starch branching enzyme IIb in wheat is expressed at low levels in the endosperm compared to other cereals and encoded at a non-syntenic locus. Planta, 2005, 222: 899–909 [9] Stinard P S, Robertson D S, Schnable P S. Genetic isolation, cloning and analysis of mutator-induced, dominant antimorph of maize amylose extenter 1 locus. Plant Cell, 1993, 5: 1555–1566 [10] Nishi A, Nakamura Y, Tanaka N, Satoh H. Biochemical and genetic effects of amylase-extender mutation in rice endosperm. Plant Physiol, 2001, 127: 459–472 [11] Tetlow I J, Wait R, Lu Z X, Akkasaeng R, Bowsher C G, Esposito S, Hashemi B K, Morell M K, Emes M J. Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein-protein interactions. Plant Cell, 2004, 16: 694–708 [12] Nagamine T, Yoshida H, Komae K. Varietal differences and chromosome locations of multiple isoforms of starch branching enzyme in wheat endosperm. Phytochemistry, 1997, 46: 23–26 [13] Zhao F-M(赵法茂), Bi J-J(毕建杰), Li T-J(李天骄), Pang X-Y(逄孝云), Wang X-Z(王宪泽). Relationship between isozyme genotypes and activities of starch branching enzyme in wheat grain. Acta Agron Sin (作物学报), 2007, 33(11): 1850–1855 (in Chinese with English abstract) [14] Denyer K, Sidebottom C, Hylton C H, Smith A M. Soluble isoforms of starch synthase and starch-branching enzyme also occur within starch granules in developing pea embryos. Plant J, 1993, 4: 191–198 [15] Denyer K, Hylton C M, Jenner C F, Smith A M. Identification of multiple isoforms of soluble and granule-bound starch synthase in developing wheat endosperm. Planta, 1995, 196: 256–265 [16] Rahman S, Hashemi B K, Samuel M S, Hill A, Abbott D C, Skerritt J H, Preiss J, Appels R, Morell M K. The major proteins of wheat endosperm starch granules. Aust J Plant Physiol, 1995, 22: 793–803 [17] Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227: 680–685 [18] Yamamori M, Endo T R. Variation of starch granule proteins and chromosome mapping of their coding genes in common wheat. Theor Appl Genet, 1996, 93: 275–281 [19] Hager D A, Burgess R R. Elution of proteins from SDS-polyacrylamide gels, removal of SDS, and renaturation of enzymatic activity: Results with sigma subunit of E. coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Anal Biochem, 1980, 109: 76–86 [20] Dynan W S, Jendrisak JJ, Hager D A, Burgess R D. Purification and characterization of wheat germ DNA topoisomerase I (nicking-closing enzyme). J Biol Chem, 1981, 256: 5860–5865 [21] Li T-G(李太贵), Shen B(沈波), Chen N(陈能), Luo Y-K(罗玉坤). Effect of Q-enzymeon the chalkiness formation of rice grain. Acta Agron Sin (作物学报), 1997, 23(3): 338–344 (in Chinese with English abstract) [22] Takaoka M, Watanabe S, Sassa H, Yamamori M, Nakamura T, Sasakuma T, Hirano H. Structural characterization of high molecular weight starch granule-bound proteins in wheat (Triticum aestivum L.). J Agric Food Chem, 1997, 45: 2929–2934 [23] Yamamori M, Fujita S, Hayakawa K, Matsuki J, Yasui T. Genetic elimination of a starch granule protein, SGP-1, of wheat generates an altered starch with apparent high amylose. Theor Appl Genet, 2000, 101: 21–29 [24] Baba T, Nishiara M, Mizuno K, Kawasaki T, Shimada H, Kobayashi E, Ohnishi S, Tanaka K, Arai Y. Identification, cDNA cloning, and gene expression of soluble starch synthase in rice (Oryza sativa L.) immature seeds. Plant Physiol, 1993, 103: 565–573 [25] Commuri P D, Keeling P G. Chain-length specificities of maize starch synthase I enzyme: studies of glucan affinity and catalytic properties. Plant J, 2001, 25: 475–486 [26] Regina A, Bird D, Topping D, Bowden S, Freeman J, Barsby T, Hashemi B K, Li Z, Rahman S, Morell M. High amylose wheat generated by RNA-interference improves indices of large bowel health in rats. Proc Natl Acad Sci USA, 2006, 103: 3546–3551 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[4] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[5] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[6] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[7] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[8] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[9] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[10] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[11] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[12] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[13] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[14] | 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436. |
[15] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
|