欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (05): 865-870.doi: 10.3724/SP.J.1006.2012.00865

• 耕作栽培·生理生化 • 上一篇    下一篇

甜菜-甜菜坏死黄脉病毒互作过程中过氧化氢的积累与分布

陈玉珍1,张少英1,*,康振生2,韩青梅2,白朕卿1   

  1. 1内蒙古农业大学农学院 / 甜菜生理研究所, 呼和浩特010019; 2西北农林科技大学 / 旱区作物逆境生物学国家重点实验室,陕西杨凌712100
  • 收稿日期:2011-11-03 修回日期:2012-01-19 出版日期:2012-05-12 网络出版日期:2012-03-05
  • 通讯作者: 张少英, E-mail: syzh36@yahoo.com.cn, Tel: 0471-4301709
  • 基金资助:

    本研究由国家自然科学基金项目(30760125)资助。

Accumulation and Distribution of Hydrogen Peroxide in Interaction between Sugarbeet Plant and Sugarbeet Necrotic Yellow Vein Virus

CHEN Yu-Zhen1,ZHANG Shao-Ying1,*,KANG Zhen-Sheng2,HAN Qing-Mei2,BAI Zhen-Qing1
  

  1. 1 College of Agronomy, Inner Mongolia Agricultural University / Sugarbeet Physiological Institute, Huhhot 010019, China; 2 Northwest Sci-Tech University of Agriculture and Forestry / State Key Laboratory of Crop Stress Biology in the Arid Areas, Yangling 712100, China
  • Received:2011-11-03 Revised:2012-01-19 Published:2012-05-12 Published online:2012-03-05
  • Contact: 张少英, E-mail: syzh36@yahoo.com.cn, Tel: 0471-4301709

摘要: 以甜菜抗、感丛根病品种与甜菜坏死黄脉病毒互作体系为研究对象,检测不同体系间H2O2的产生和积累,并利用电镜细胞化学标记技术在亚细胞水平上对H2O2的空间分布定位,探讨H2O2积累和分布与甜菜抗丛根病性的关系。结果表明, 甜菜抗、感丛根病体系均出现大量H2O2,其中抗病体系的H2O2产生量明显高于感病体系。H2O2在抗病和感病体系中的分布位置基本相似,多分布在块根、叶脉细胞的液泡膜和质膜上,叶脉细胞间隙也有H2O2的分布,但不同体系间H2O2含量有着明显差异,感病体系H2O2沉积量明显弱于抗病体系。研究结果说明,H2O2产生量和分布与甜菜抗丛根病性有密切联系,H2O2参与了甜菜对病毒侵染的防御反应。

关键词: 甜菜, BNYVV, H2O2, 细胞化学

Abstract: Hydrogen peroxide (H2O2) plays an important role in the interaction between plant and pathogen defense response. The objective of thisresearch was owing the interaction system of beet necrotic yellow vein virus (BNYVV) and resistant, susceptible sugarbeet lines to disclose the relationship of accumulation and distribution of H2O2 with sugarbeet rhizomania resistance. The production and accumulation of H2O2 in the two interaction systems were detected and the distribution of H2O2 was observed in subcellular level using the cytochemical technique. The result showed that there was plenty of H2O2 in both interaction systems, and the production of H2O2 was evidently higher in the resistant lines than with in the susceptible lines. In addition, distribution and the location of H2O2 were similar in the two lines, where we observed mainly in the tonoplast and the plasma membrane of host root, vein cells as well as the intercellular space of some host vein cells. But there were obvious differences in the content of H2O2 accumulated in the two interaction lines, the deposition of H2O2 in the susceptible line was significantly lower than that in the resistant line, showing it may have a close relationship with resistance of sugarbeet against rhizomania, H2O2 showed the involved in the defense responses to virus infection in sugar beets.

Key words: Sugarbeet, BNYVV, H2O2, Cytochemistry

[1]Scholten O E, Lange W. Breeding for resistance to rhizomania in sugar beet: a review. Euphytica, 2000, 112: 219–231

[2]Thordal-Christensen H, Zhang Z G, Wei Y D, Collinge D B. Subcellular localization of H2O2 in plants: H2O2 accumulation in papillae and hypersensitive response during the barley–powdery mildew interaction. Plant J, 1997, 11: 1187–1194

[3]Alvarez M E, Pennell R I, Meijer P J, Ishikawa A, Dixon R A, Lamb C. Reactive oxygen inter-mediates mediate a systemic signal network in the establishment of plant immunity. Cell, 1988, 92: 773–784

[4]Orozco-Cárdenas M L, Narváze-Vásquez J, Ryan C A. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemic, and methyl jasmonate. Plant Cell, 2001, 13: 179–191

[5]Wang Y-C(王源超), Zhang Z-G(张正光), Li J(李俊), An C-C(安成才), Chen Z-L(陈章良), Zheng X-B(郑小波). H2O2 is involved in hypersensitive response and systemic acquired resistance induced by the 90 kD protein elicitor of phytophthora boehmeriae. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2003, 29(3): 185–191 (in Chinese with English abstract)

[6]Maffei M E, Mithfer A, Arimura G, Uchtenthagen H, Bossi S, Bertea C M, Cucuzza L S, Novero M, Volpe V, Quadro S. Effects of feeding Spodoptera littoralis on lima bean leaves: III. Membrane depolarization and involvement of hydrogen peroxide. Plant Physiol, 2006, 140: 1022–1035

[7]Wang C F, Huang L L, Heinrich B, Han Q M, Zhang H Z, Kang Z S. Histochemical studies on the accumulation of reactive oxygen species (  and H2O2) in the incompatible and compatible interaction of wheat—Puccinia striiformis f. sp. tritici. Physiol Mol Plant Pathol, 2007, 71: 230–239

[8]Wang J-B(王俊斌). Study on some physiological and biochemical characters of resistance (tolerance) to rhizomania in sugar beet. MS Dissertation of Inner Mogolia Agricultural University, 2004 (in Chinese with English abstract)

[9]Chen G-H(陈贵华), Zhang S-Y(张少英), Li G-L(李国龙). The effects of beet necrotic yellow vein virus on the membrane lipid peroxidation in sugarbeet seedings. J Inner Mogolia Agric Univ (内蒙古农业大学学报), 2010, 31(4): 40–42 (in Chinese with English abstract)

[10]Yu J-L(于嘉林), Han C-G(韩成贵), Yang L-L(杨莉莉), Li D-W(李大伟), Liu Y(刘仪). cDNA cloning, sequencing and expression of RNA4 from beet necrotic yellow vein virus. Acta Microbiol Sin (微生物学报), 1997, 37(1): 7–14 (in Chinese with English abstract)

[11]Lin Z-F(林植芳), Li S-S(李双顺), Lin G-Z(林桂珠), Guo J-Y(郭俊彦). The accumulation of hydrogen peroxide in senescing leaves and chloroplasts in relation to lipid peroxidation. Acta Phytophysiol Sin (植物生理学报), 1988, 14(1): 16–22 (in Chinese with English abstract)

[12]Wang C-F(王晨芳). Studies on histology and cytochemistry of oxidative burst during wheet-Puccinia striiformis f. sp. tritici interaction. PhD Dissertation of Northwest A & F University, 2008 (in Chinese with English abstract)

[13]Laloi C, Apell K, Danon A. Reactive oxygen signaling: the latest news. Curr Opin Plant Biol, 2004, 7: 323–328

[14]Song L-L(宋莉璐), Zhang Q(张荃). Reactive oxygen gene network of plants and its regulation. Chin Bull Life Sci (生命科学), 2007, 19(3): 346–352 (in Chinese with English abstract)

[15]Zhai W-X(瞿文学), Zhu L-H(朱立煌). Cloning of the plant resistance genes and molecular breeding. Prog Biotechnol (生物工程进展), 1996, 16(1): 17–21 (in Chinese with English abstract)

[16]Andreev I M. Functions of the vacuole in higher plant cells. Russ J Plant Physiol, 2001, 48: 672–680

[17]An Y(安钰). The role of hydrogen peroxide in induced defense response of Populus simonii× P. pyramidalis cv. ‘Opera 8277’ Cuttings. PhD Dissertation of Beijing Forestry University, 2008 (in Chinese with English abstract)

[18]Romero-Puertas M C, Rodríguez-Serrano M, Corpas F J, Gómez M, Delrío L A, Sandalio L M. Cadmium induced subcellular accumulation of   and H2O2 in pea leaves. Plant Cell Environ, 2004, 27: 1122–1134
[1] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[2] 张加康, 李斐, 史树德, 杨海波. 内蒙古地区甜菜临界氮浓度稀释模型的构建及应用[J]. 作物学报, 2022, 48(2): 488-496.
[3] 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135.
[4] 马晓寒,张杰,张环纬,陈彪,温心怡,许自成. 通过外源MeJA抑制H2O2积累提高烟草的耐冷性[J]. 作物学报, 2019, 45(3): 411-418.
[5] 黄春燕,苏文斌,张少英,樊福义,郭晓霞,李智,菅彩媛,任霄云,宫前恒. 施钾量对膜下滴灌甜菜光合性能以及对产量和品质的影响[J]. 作物学报, 2018, 44(10): 1496-1505.
[6] 李智,李国龙,张永丰,于超,苏文斌,樊福义,张少英. 膜下滴灌条件下高产甜菜灌溉的生理指标[J]. 作物学报, 2017, 43(11): 1724-1730.
[7] 李阳阳,费聪,崔静,王开勇,马富裕,樊华. 滴灌甜菜对块根膨大期水分亏缺的补偿性响应[J]. 作物学报, 2016, 42(11): 1727-1732.
[8] 喻时周,杨成龙,郭建春,段瑞军. 海马齿甜菜碱醛脱氢酶基因克隆、高效表达及酶学特性分析[J]. 作物学报, 2016, 42(10): 1569-1574.
[9] 李慧聪,李国良,郭秀林. 玉米热激转录因子基因ZmHSF-Like对逆境胁迫响应的信号途径[J]. 作物学报, 2014, 40(04): 622-628.
[10] 王茂芊,李博,王华忠. 甜菜遗传连锁图谱初步构建[J]. 作物学报, 2014, 40(02): 222-230.
[11] 李伟,申家恒,郭德栋. 栽培甜菜中央细胞受精前后的超微结构[J]. 作物学报, 2014, 40(01): 166-173.
[12] 李伟,申家恒,郭德栋. 栽培甜菜助细胞退化进程的超微结构观察[J]. 作物学报, 2013, 39(12): 2220-2227.
[13] 李枝梅,窦海鸥,卫丹丹,孟庆伟,CHEN Tony Huihuang,杨兴洪. codA基因提高番茄植株的耐热性[J]. 作物学报, 2013, 39(11): 2046-2054.
[14] 侯鹏飞,马俊青,赵鹏飞,张欢玲,赵会杰,刘华山,赵一丹,汪月霞. 外源甜菜碱对干旱胁迫下小麦幼苗叶绿体抗氧化酶及psbA基因表达的调节[J]. 作物学报, 2013, 39(07): 1319-1324.
[15] 马兰,杜洪岩,李荣田. 甜菜单体附加系M14种子形成方式[J]. 作物学报, 2013, 39(03): 381-388.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!