Rice (Oryza sativa L.),psf mutant,Ultra-structure,Photosynthesis rate,Chlorophyll fluorescence,"/> 水稻生育后期叶片早衰突变体的光合特性与叶绿体超微结构观察
欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (05): 871-879.doi: 10.3724/SP.J.1006.2012.00871

• 耕作栽培·生理生化 • 上一篇    下一篇

水稻生育后期叶片早衰突变体的光合特性与叶绿体超微结构观察

王复标1,黄福灯2,程方民1,*,李兆伟1,胡东维1,潘刚1,*,毛愉婵1   

  1. 1浙江大学农业与生物技术学院,浙江杭州310058; 2 浙江省农业科学院,浙江杭州310031
  • 收稿日期:2011-10-20 修回日期:2011-12-19 出版日期:2012-05-12 网络出版日期:2012-02-13
  • 通讯作者: 程方民, E-mail: chengfm@zju.edu.cn; 潘刚, E-mail: pangang12@126.com
  • 基金资助:

    本研究由国家自然科学基金项目(31071366和30871488)和中央高校基本科研业务费专项资金资助。

Photosynthesis and Chloroplast Ultra-structure Characteristics of Flag Leaves for a Premature Senescence Rice Mutant

WANG Fu-Biao1,HUANG Fu-Deng2,CHENG Fang-Min1,*,LI Zhao-Wei1,HU Dong-Wei1,PAN Gang1,*,MAO Yu-Chan1   

  1. 1 College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; 2 Zhejiang Academy of Agricultural Sciences, Hangzhou 310031, China
  • Received:2011-10-20 Revised:2011-12-19 Published:2012-05-12 Published online:2012-02-13
  • Contact: 程方民, E-mail: chengfm@zju.edu.cn; 潘刚, E-mail: pangang12@126.com

摘要: 以旗叶早衰的水稻突变体(psf)与其野生型对照(浙恢7954)为材料,对两者在水稻抽穗开花后旗叶衰老过程中的光合速率、叶绿素荧光和叶绿体超微结构比较分析表明,旗叶早衰突变后的每穗实粒数、结实率、千粒重和单株产量均不同程度降低,以对每穗实粒数和结实率的影响程度最明显; 在水稻灌浆期间,psf旗叶的叶绿素含量、叶绿素a/b值、净光合速率(Pn)、PSII潜在活性(Fv/Fo)和最大光化学效率(Fv/Fm)均比其野生型对照明显降低,且随着抽穗开花后天数的推移,供试材料间的差异幅度呈逐渐拉大趋势; psf叶肉细胞中的叶绿体排列、形态大小及其类囊体结构在水稻抽穗开花期基本正常,但随着叶片衰老过程的推进,psf叶肉细胞中的叶绿体相继会出现沿细胞壁周缘化、外部形态缩皱变形、嗜锇颗粒增多变大、类囊体膜系统退化、片层结构完全解体等变化。其中,叶绿体沿叶肉细胞壁排列的周缘化与外形结构的球状化表现,与叶绿体类囊体膜系统损伤和开始降解之前的净光合速率(Pn)下降有关,而由类囊体膜系统受损所带来的Fv/FmFv/Fo下降过程,则相对滞后于Pn和叶绿素含量下降的起始时间。

关键词: 水稻, psf突变体, 超微结构, 光合速率, 叶绿素荧光

Abstract: The influences of leaf premature senescence at the filling stage on photosynthesis rate, chlorophyll fluorescence and chloroplast ultra-structure were investigated using Zhehui 7954 (an excellent indica restorer line) and its leaf senescence mutant (psf). The results indicated that the psf mutant had significantly negative influence on the numbers of filling grains per panicle, seed-setting rate, 1000-grain weight and yield per plant, especially on the numbers of filling grains per panicle and seed-setting rate. Compared with CK, psf also exhibited dramatically lower chlorophyll content, the ratio of chlorophyll a/b, photosynthetic rate (Pn) and chlorophyll fluorescence parameters Fv/Fo and Fv/Fm at filling stage, which were further lowered in the process of maturity. No visual changesin the ultra-structure of mesophyll cells and chloroplasts were observed for psf, showing its intact thylakoid, plastoglobuli size and shape. However, abnormal shape and stacking parallel distribution of chloroplasts, near the cell wall, the degraded grana, the plastoglobuli residue and the destroyed chloroplast membrane could be detected in psf mesophyll cells, in which the appearance of stacking and spherical chloroplasts was responsible for the dropped Pn in psf leaf prior to the degradation and disintegration of thylakoid and grana membrane, thereby caused the decrease of Fv/Fo and Fv/Fm.

Key words: Rice (Oryza sativa L.)')">

[1]Wu W-M(吴伟明), Wang Y-P(王一平), Zhao H(赵航), Cao L-Y(曹立勇), Zhan X-D(占小登), Cheng S-H(程式华). Growth phenomenon of adventitious root penetrating through the base of sheath and its effects on leaf senescence in rice. Sci Agric Sin (中国农业科学), 2005, 38(3): 474-479 (in Chinese with English abstract)

[2]Zhang C J, Chu H J, Chen G X, Shi D W, Zuo M, Wang J, Lu C G, Wang P, Chen L. Photosynthetic and biochemical activities in flag leaves of a newly developed super high-yield hybrid rice (Oryza sativa) and its parents during the reproductive stage. J Plant Res, 2007, 120: 209-217

[3]Inada N, Sakai A, Kuroiwa H, Kuroiwa T. Senescence program in rice (Oryza sativa L.) leaves: analysis of the blade of the second leaf at the tissue and cellular levels. Protoplasma, 1999, 207: 222-232

[4]Duan J(段俊), Liang C-Y(梁承邺), Huang Y-W(黄毓文). Studies on leaf senescence of hybrid rice at flowering and grain formation stage. Acta Phytophysiol Sin (植物生理学报), 1997, 23(2): 139-144 (in Chinese with English abstract)

[5]Li M-Y(李木英), Shi Q-H(石庆华), Zheng W(郑伟), Pan X-H(潘晓华), Tan X-M(谭雪明). Study on the leaf senescence type and its influencing factors in hybrid rice during grain filling stage. Acta Agric Univ Jiangxi (江西农业大学学报), 2010, 32(6): 1081-1088 (in Chinese with English abstract)

[6]Yang J-C(杨建昌), Zhu Q-S(朱庆森), Wang Z-Q(王志琴), Lang Y-Z(郎有忠). Photosynthetic characteristics, dry-matter accumulation and its translocation in intersubspecific hybrid rice. Acta Agron Sin (作物学报), 1997, 23(1): 82-88 (in Chinese with English abstract)

[7]Ma L(马林). Advances in studies on physiological and biochemical changes during plant senescence. J Biol (生物学杂志), 2007, 24(3):12-15 (in Chinese with English abstract)

[8]Buchanan-Wollaston V. The molecular biology of leaf senescence. J Exp Bot, 1997, 48: 181-199

[9]Becker W, Apel K. Differences in gene expression between natural and artificially induced leaf senescence. Planta, 1993, 189: 74-79

[10]Gan S S, Amisino R M. Molecular genetic regulation and manipulation of leaf senescence. Plant Physiol, 1997, 113: 313-319

[11]Tang Y, Wen X, Lu C. Differential changes in degradation of chlorophyll-protein complexes of photosystem I and photosystem II during flag leaf senescence of rice. Plant Physiol Biochem, 2005, 43: 193-201

[12]Peng X-X(彭新湘), Peng S-B(彭少兵). Degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase in naturally senescing rice leaves. Acta Phytophysiol Sin (植物生理学报), 2000, 26(1): 46-52 (in Chinese with English abstract)

[13]Dhindsa R S, Dhindsa P P, Thorpe T A. Leaf scenescene correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot, 1981, 32: 93-101

[14]Zhu C(朱诚), Fu Y-P(傅亚萍), Sun Z-X(孙宗修). Relationship between leaf senescence and activated oxygen metabolism in super high yielding rice during flowering and grain stage. Chin J Rice Sci (中国水稻科学), 2002, 16(4): 326-330 (in Chinese with English abstract)

[15]Park S Y, Yu J W, Park J S, Li J J, Yoo S C, Lee N Y, Jeong S W, Park Y I, Paek N C. The senescence-induced stay green protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649-1664

[16]Simpson R J, Dalling M J. Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.): III. Enzymology and transport of amino acids from senescing flag leaves. Planta, 1981, 151: 447-456

[17]Simeonova E, Sikora A, Charzyniska M, Mostowska A. Aspects of programmed cell death during leaf senescence of mono- and dicotyledonous plants. Protoplasma, 2009, 214: 93-101

[18]Oh S A, Park J H, Lee G I, Paek K H, Park S K, Nam H G. Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. J Plant, 1997, 12: 527-533

[19]Liu L, Zhou Y, Zhou G, Ye R J, Zhao L N, Li X H, Lin Y J. Identification of early senescence-associated genes in rice flag leaves. Plant Mol Biol, 2008, 67: 37-55

[20]Smart C M, Hosken S E, Thomas H, Greaves J A, Blair B G, Schuch W. The timing of maize leaf senescence and characterization of senescence-related cDNAs. Plant Physio1, 1995, 93: 673-682

[21]Wang J(王军), Wu S-J(吴书俊), Zhou Y(周勇), Zhou L-H(周丽慧), Xu J-F(徐洁芬), Gu M-H(顾铭洪), Liang G-H(梁国华). Fine genetic mapping and gene identification of a premature senescence leaf (psl1) mutant. Chin Sci Bull (科学通报), 2006, 51(20): 2387-2392 (in Chinese)

[22]Lim P O, Nam H G. Aging and senescence of the leaf organ. J Plant Biol, 2007, 50: 291-300

[23]Lee R H, Wang G H, Huang L T, Chen S C. Leaf senescence in rice plants: cloning and characterization of senescence up-regulated genes. J Exp Bot, 2001, 52: 1117-1126

[24]Betania F Q, Noh Y S, Edward H, Amasino R M. Molecular aspects of leaf senescence. Trend Plant Sci, 2000, 5: 278-282

[25]Kong Z S, Li M N, Yang W Q, Xu W Y, Xue Y B. A novel nuclear-localized CCCH-Type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol, 2006, 141: 1376-1388

[26]Zhang Z-L(张志良), Qu W-J(瞿伟菁). Experimental Guidance of Plant Physiology (植物生理学实验指导), 3rd edn. Beijing: Higher Education Press, 2005. pp 167-169 (in Chinese)

[27]Maxwell K, Johnson G N. Chlorophyll fluorescence- A practical guide. J Exp Bot, 2000, 51: 659-668

[28]Wei H-Y(魏海燕), Zhang H-C(张洪程), Ma Q(马群), Dian Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许柯), Zhang Q(张庆). Characteristics of leaf senescence in rice genotypes with different nitrogen use efficiencies. Acta Agron Sin (作物学报), 2010, 36(4): 645-654 (in Chinese with English abstract)

[29]Xue J-S(谢金水), Shao C-H(邵彩虹), Tang X-Y(唐秀英), Shi Q-H(石庆华). Proteomics analysis of nutrition stress effect on rice leaf senescence at grain filling stage. Chin J Rice Sci (中国水稻科学), 2011, 25(2): 143-149 (in Chinese with English abstract)

[30]Biswas A K, Mondal S K. Regulation by kinetin and abcisic acid of correlative senescence in relation to grain maturation, source-sink relationship and yield of rice. Plant Growth Regul, 1986, 4: 239-245

[31]Kim J W, Shon J Y, Lee C K, Yang W H, Kim Y G, Lee B W. Relationship between grain filling duration and leaf senescence of temperate rice under high temperature. Field Crops Res, 2011, 122: 207-213

[32]Ma W-B(马文波), Ma J(马均), Ming D-F(明东风), Xu F-Y(许凤英), Yan Z-B(严志彬), Sun X-H(孙晓辉). Studies on the photosynthetic characteristics of the flag leaf of different panicle weight of rice. Acta Agron Sin (作物学报), 2003, 29(2): 236-240 (in Chinese with English abstract)

[33]Park S Y, Yu J W, Park J S, Li J J, Yoo S C, Lee N Y, Jeong S W, Park Y I, Paek N C. The senescence-induced stay green protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649-1664

[34]Wang D-Y(王丹英), Zhang X-F(章秀福), Shao G-S(邵国胜), Qian Q(钱前), Xu C-M(徐春梅). Leaf senescence of difference leaf color rice and its response to light intensity. Chin J Rice Sci (中国水稻科学), 2008, 22(1): 77-81 (in Chinese with English abstract)

[35]Farquhar D G, Sharkey T D. Stomatal conductance and photosynthesis. Annu Rev Plant Physiol, 1982, 33: 317-355

[36]Kusaba M, Ito H, Morita R, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING is involved in light—harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362-1375
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!