Rice (Oryza sativa L.),psf mutant,Ultra-structure,Photosynthesis rate,Chlorophyll fluorescence,"/>
作物学报 ›› 2012, Vol. 38 ›› Issue (05): 871-879.doi: 10.3724/SP.J.1006.2012.00871
王复标1,黄福灯2,程方民1,*,李兆伟1,胡东维1,潘刚1,*,毛愉婵1
WANG Fu-Biao1,HUANG Fu-Deng2,CHENG Fang-Min1,*,LI Zhao-Wei1,HU Dong-Wei1,PAN Gang1,*,MAO Yu-Chan1
摘要: 以旗叶早衰的水稻突变体(psf)与其野生型对照(浙恢7954)为材料,对两者在水稻抽穗开花后旗叶衰老过程中的光合速率、叶绿素荧光和叶绿体超微结构比较分析表明,旗叶早衰突变后的每穗实粒数、结实率、千粒重和单株产量均不同程度降低,以对每穗实粒数和结实率的影响程度最明显; 在水稻灌浆期间,psf旗叶的叶绿素含量、叶绿素a/b值、净光合速率(Pn)、PSII潜在活性(Fv/Fo)和最大光化学效率(Fv/Fm)均比其野生型对照明显降低,且随着抽穗开花后天数的推移,供试材料间的差异幅度呈逐渐拉大趋势; psf叶肉细胞中的叶绿体排列、形态大小及其类囊体结构在水稻抽穗开花期基本正常,但随着叶片衰老过程的推进,psf叶肉细胞中的叶绿体相继会出现沿细胞壁周缘化、外部形态缩皱变形、嗜锇颗粒增多变大、类囊体膜系统退化、片层结构完全解体等变化。其中,叶绿体沿叶肉细胞壁排列的周缘化与外形结构的球状化表现,与叶绿体类囊体膜系统损伤和开始降解之前的净光合速率(Pn)下降有关,而由类囊体膜系统受损所带来的Fv/Fm和Fv/Fo下降过程,则相对滞后于Pn和叶绿素含量下降的起始时间。
[1]Wu W-M(吴伟明), Wang Y-P(王一平), Zhao H(赵航), Cao L-Y(曹立勇), Zhan X-D(占小登), Cheng S-H(程式华). Growth phenomenon of adventitious root penetrating through the base of sheath and its effects on leaf senescence in rice. Sci Agric Sin (中国农业科学), 2005, 38(3): 474-479 (in Chinese with English abstract)[2]Zhang C J, Chu H J, Chen G X, Shi D W, Zuo M, Wang J, Lu C G, Wang P, Chen L. Photosynthetic and biochemical activities in flag leaves of a newly developed super high-yield hybrid rice (Oryza sativa) and its parents during the reproductive stage. J Plant Res, 2007, 120: 209-217[3]Inada N, Sakai A, Kuroiwa H, Kuroiwa T. Senescence program in rice (Oryza sativa L.) leaves: analysis of the blade of the second leaf at the tissue and cellular levels. Protoplasma, 1999, 207: 222-232[4]Duan J(段俊), Liang C-Y(梁承邺), Huang Y-W(黄毓文). Studies on leaf senescence of hybrid rice at flowering and grain formation stage. Acta Phytophysiol Sin (植物生理学报), 1997, 23(2): 139-144 (in Chinese with English abstract)[5]Li M-Y(李木英), Shi Q-H(石庆华), Zheng W(郑伟), Pan X-H(潘晓华), Tan X-M(谭雪明). Study on the leaf senescence type and its influencing factors in hybrid rice during grain filling stage. Acta Agric Univ Jiangxi (江西农业大学学报), 2010, 32(6): 1081-1088 (in Chinese with English abstract)[6]Yang J-C(杨建昌), Zhu Q-S(朱庆森), Wang Z-Q(王志琴), Lang Y-Z(郎有忠). Photosynthetic characteristics, dry-matter accumulation and its translocation in intersubspecific hybrid rice. Acta Agron Sin (作物学报), 1997, 23(1): 82-88 (in Chinese with English abstract)[7]Ma L(马林). Advances in studies on physiological and biochemical changes during plant senescence. J Biol (生物学杂志), 2007, 24(3):12-15 (in Chinese with English abstract)[8]Buchanan-Wollaston V. The molecular biology of leaf senescence. J Exp Bot, 1997, 48: 181-199[9]Becker W, Apel K. Differences in gene expression between natural and artificially induced leaf senescence. Planta, 1993, 189: 74-79[10]Gan S S, Amisino R M. Molecular genetic regulation and manipulation of leaf senescence. Plant Physiol, 1997, 113: 313-319[11]Tang Y, Wen X, Lu C. Differential changes in degradation of chlorophyll-protein complexes of photosystem I and photosystem II during flag leaf senescence of rice. Plant Physiol Biochem, 2005, 43: 193-201[12]Peng X-X(彭新湘), Peng S-B(彭少兵). Degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase in naturally senescing rice leaves. Acta Phytophysiol Sin (植物生理学报), 2000, 26(1): 46-52 (in Chinese with English abstract)[13]Dhindsa R S, Dhindsa P P, Thorpe T A. Leaf scenescene correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot, 1981, 32: 93-101[14]Zhu C(朱诚), Fu Y-P(傅亚萍), Sun Z-X(孙宗修). Relationship between leaf senescence and activated oxygen metabolism in super high yielding rice during flowering and grain stage. Chin J Rice Sci (中国水稻科学), 2002, 16(4): 326-330 (in Chinese with English abstract)[15]Park S Y, Yu J W, Park J S, Li J J, Yoo S C, Lee N Y, Jeong S W, Park Y I, Paek N C. The senescence-induced stay green protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649-1664[16]Simpson R J, Dalling M J. Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.): III. Enzymology and transport of amino acids from senescing flag leaves. Planta, 1981, 151: 447-456[17]Simeonova E, Sikora A, Charzyniska M, Mostowska A. Aspects of programmed cell death during leaf senescence of mono- and dicotyledonous plants. Protoplasma, 2009, 214: 93-101[18]Oh S A, Park J H, Lee G I, Paek K H, Park S K, Nam H G. Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. J Plant, 1997, 12: 527-533[19]Liu L, Zhou Y, Zhou G, Ye R J, Zhao L N, Li X H, Lin Y J. Identification of early senescence-associated genes in rice flag leaves. Plant Mol Biol, 2008, 67: 37-55[20]Smart C M, Hosken S E, Thomas H, Greaves J A, Blair B G, Schuch W. The timing of maize leaf senescence and characterization of senescence-related cDNAs. Plant Physio1, 1995, 93: 673-682[21]Wang J(王军), Wu S-J(吴书俊), Zhou Y(周勇), Zhou L-H(周丽慧), Xu J-F(徐洁芬), Gu M-H(顾铭洪), Liang G-H(梁国华). Fine genetic mapping and gene identification of a premature senescence leaf (psl1) mutant. Chin Sci Bull (科学通报), 2006, 51(20): 2387-2392 (in Chinese)[22]Lim P O, Nam H G. Aging and senescence of the leaf organ. J Plant Biol, 2007, 50: 291-300[23]Lee R H, Wang G H, Huang L T, Chen S C. Leaf senescence in rice plants: cloning and characterization of senescence up-regulated genes. J Exp Bot, 2001, 52: 1117-1126[24]Betania F Q, Noh Y S, Edward H, Amasino R M. Molecular aspects of leaf senescence. Trend Plant Sci, 2000, 5: 278-282[25]Kong Z S, Li M N, Yang W Q, Xu W Y, Xue Y B. A novel nuclear-localized CCCH-Type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol, 2006, 141: 1376-1388[26]Zhang Z-L(张志良), Qu W-J(瞿伟菁). Experimental Guidance of Plant Physiology (植物生理学实验指导), 3rd edn. Beijing: Higher Education Press, 2005. pp 167-169 (in Chinese)[27]Maxwell K, Johnson G N. Chlorophyll fluorescence- A practical guide. J Exp Bot, 2000, 51: 659-668[28]Wei H-Y(魏海燕), Zhang H-C(张洪程), Ma Q(马群), Dian Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许柯), Zhang Q(张庆). Characteristics of leaf senescence in rice genotypes with different nitrogen use efficiencies. Acta Agron Sin (作物学报), 2010, 36(4): 645-654 (in Chinese with English abstract)[29]Xue J-S(谢金水), Shao C-H(邵彩虹), Tang X-Y(唐秀英), Shi Q-H(石庆华). Proteomics analysis of nutrition stress effect on rice leaf senescence at grain filling stage. Chin J Rice Sci (中国水稻科学), 2011, 25(2): 143-149 (in Chinese with English abstract)[30]Biswas A K, Mondal S K. Regulation by kinetin and abcisic acid of correlative senescence in relation to grain maturation, source-sink relationship and yield of rice. Plant Growth Regul, 1986, 4: 239-245[31]Kim J W, Shon J Y, Lee C K, Yang W H, Kim Y G, Lee B W. Relationship between grain filling duration and leaf senescence of temperate rice under high temperature. Field Crops Res, 2011, 122: 207-213[32]Ma W-B(马文波), Ma J(马均), Ming D-F(明东风), Xu F-Y(许凤英), Yan Z-B(严志彬), Sun X-H(孙晓辉). Studies on the photosynthetic characteristics of the flag leaf of different panicle weight of rice. Acta Agron Sin (作物学报), 2003, 29(2): 236-240 (in Chinese with English abstract)[33]Park S Y, Yu J W, Park J S, Li J J, Yoo S C, Lee N Y, Jeong S W, Park Y I, Paek N C. The senescence-induced stay green protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649-1664[34]Wang D-Y(王丹英), Zhang X-F(章秀福), Shao G-S(邵国胜), Qian Q(钱前), Xu C-M(徐春梅). Leaf senescence of difference leaf color rice and its response to light intensity. Chin J Rice Sci (中国水稻科学), 2008, 22(1): 77-81 (in Chinese with English abstract)[35]Farquhar D G, Sharkey T D. Stomatal conductance and photosynthesis. Annu Rev Plant Physiol, 1982, 33: 317-355[36]Kusaba M, Ito H, Morita R, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING is involved in light—harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362-1375 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
|