作物学报 ›› 2012, Vol. 38 ›› Issue (05): 880-886.doi: 10.3724/SP.J.1006.2012.00880
邢承华1,张淑娜2,吴坤2,王宁2,凌云2
XING Cheng-Hua1,ZHANG Shu-Na2,WU Kun2,WANG Ning2,LING Yun2
摘要: 以水稻II优3027 (耐铝基因型)和红良优166 (铝敏感基因型)为材料,采用悬空培养法,在根尖附着和移除边缘细胞(root border cell, RBCs)条件下,比较研究水稻生长、根尖铝含量和细胞壁组分含量变化及其与耐铝性的关系。结果表明,铝抑制水稻根系伸长,导致根尖和细胞壁铝积累。移除根尖边缘细胞令根伸长抑制率、根尖胼胝质含量、根尖和细胞壁铝含量及细胞壁单核铝含量显著低于保留边缘细胞的根。此外,对比于根尖移除边缘细胞,保留边缘细胞降低了细胞壁中果胶和半纤维素1含量,而对半纤维素2含量无影响。表明铝毒胁迫下水稻根尖由于附着边缘细胞,阻止了根系铝吸收,并维持较低的细胞壁果胶和半纤维素1含量,减少细胞壁吸附铝的位点。同时也减少了根尖毒性形态铝的含量,降低了铝的生物有效性,从而提高了水稻的耐铝性。
[1]Horst W J, Wang Y X, Eticha D. The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Ann Bot-London, 2010, 106: 185–197[2]Ma J F. Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int Rev Cytol, 2007, 264: 225–252[3]Yang J L, Li Y Y, Zhang Y J, Zhang S S, Wu Y R, Wu P, Zheng S J. Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiol, 2008, 146: 602–611[4]Hossain A K M Z, Koyama H, Hara T. Sugar compositions and molecular mass distributions of hemicellulosic polysaccharides in wheat plants under aluminum stress at higher level of calcium supply. Asian J Plant Sci, 2005, 4: 11–16[5]Schmohl N, Horst W J. Cell wall pectin content modulates aluminum sensitivity of Zea mays (L.) cells grown in suspension culture. Plant Cell Environ, 2000, 23: 735–742[6]Van H L, Kuraishi S, Sakurai N. Aluminum-induced rapid root inhibition and changes in cell-wall components of squash seedlings. Plant Physiol, 1994, 106: 971–976[7]Yang J L, Zhu X F, Peng Y X, Zheng C, Liu Y, Shi Y Z, Zheng S J. Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis. Plant Physiol, 2011, 155: 1885–1892[8]Yamaji N, Huang C F, Nagao S, Yano M, Sato Y, Nagamura Y, Ma J F. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell, 2009, 21: 3339–3349[9]Huang C F, Yamaji N, Mitani N, Yano M, Nagamura Y, Ma J F. A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell, 2009, 21: 655–667[10]Yu M, Shen R F, Liu J Y, Chen R F, Xu M M, Yang Y, Xiao H D, Wang H Z, Wang H Y, Wang C Q. The role of root border cells in aluminum resistance of pea (Pisum sativum) grown in mist culture. J Plant Nutr Soil Sci, 2009, 172: 528–534[11]Xing C H, Zhu M H, Cai M Z, Liu P, Xu G D, Wu S H. Developmental characteristics and response to iron toxicity of root border cells in rice seedlings. J Zhejiang Univ Sci B, 2008, 9: 261–264[12]Liu J-Y(刘家友),Yu M(喻敏), Liu L-P(刘丽屏), Xiao H-D(萧洪东). Differences of cell wall polysaccharides in border cells and root apices of pea (Pisum sativum) under aluminium stress. Sci Agric Sin (中国农业科学), 2009, 42(6): 1963–1971 (in Chinese with English abstract)[13]Miyasaka S C, Hawes M C. Possible role of root border cells in detection and avoidance of aluminum toxicity. Plant Physiol, 2001, 125: 1978–1987[14]Cai M Z, Wang F M, Li R F,Zhang S N, Wang N, Xu G D. Response and tolerance of root border cells to aluminum toxicity in soybean seedlings. J Inorg Biochem, 2011, 105: 966–971[15]Zhu M Y, Ahn S J, Matsumoto H. Inhibition of growth and development of root border cells in wheat by Al. Physiol Plant, 2003, 117: 359–367[16]Cai M Z, Zhang S N, Xing C H, Wang F M, Wang N, Zhu L. Developmental characteristics and aluminum resistance of root border cells in rice seedlings. Plant Sci, 2011, 180: 702–708[17]Tamás L, Budíková S, Huttová J. Aluminum-induced cell death of barley-root border cells is correlated with peroxidase- and oxalate oxidase-mediated hydrogen peroxide production. Plant Cell Rep, 2005, 24: 189–194[18]Ma J F, Shen R F, Zhao Z Q, Wissuwa M, Takeuchi Y, Takeshi Ebitani T, Yano M. Response of rice to Al stress and identification of quantitative trait loci for Al tolerance. Plant Cell Physiol, 2002, 43: 652–659[19]Chen R F, Shen R F, Gu P, Dong X Y, Du C W, Ma J F. Response of rice (Oryza sativa L.) with root surface iron plaque under aluminium stress. Ann Bot-London, 2006, 98: 389–395[20]Köhle H, Jeblick W, Poten F, Blaschek W, Kauss H. Chitosan-elicited callose synthesis in soybean cells as a Ca2+-dependent process. Plant Physiol, 1985, 77: 544–551[21]Zhong H, Lauchli A. Changes of cell wall composition and polymesize in primary roots of cotton seedlings under high salinity. J Exp Bot, 1993, 44: 773–778[22]Chen R-F(陈荣府), Yang X-D(杨小弟), Shen R-F(沈仁芳). Methods for determining inorganic monomeric aluminum in acid soil solution by morin. Acta Pedol Sin (土壤学报), 2007, 44(4): 663–668 (in Chinese with English abstract) [23]Taylor K A, Buchanan-Smith J G. A colorimetric for the quantitation of uronic acids and a specific assay for galacturonic acid. Anal Biochem, 1992, 201: 190–196[24]Li R-F (李荣峰), Cai M-Z (蔡妙珍), Liu P (刘鹏), Xu G-D (徐根娣), Liang H (梁和), Zhou Z-G (周主贵). Border cells alleviating aluminum toxicity in soybean root tips. Acta Agron Sin (作物学报), 2008, 34(1): 318–325 (in Chinese with English abstract)[25]Horst W J, Schmohl N, Kollmeier M, Baluska F, Sivaguruet al M. Does aluminium affect root growth of maize through interaction with the cell wall-plasma membrane-cytoskeleton continuum? Plant Soil, 1999, 215: 163–174[26]Watanabe T, Misawa S, Hiradate S, Osaki M. Characterization of root mucilage from Melastoma malabathricum, with emphasis on its roles in aluminum accumulation. New Phytol, 2008, 178: 581–589[27]Kinraide T B, Ryan P R, Kochian L V. Interactive effects of Al3+, H+, and other cations on root elongation considered in terms of cell-surface electrical potential. Plant Physiol, 1992, 99: 1461–1468.[28]Cai M-Z(蔡妙珍), Xing C-H(邢承华), Liu P(刘鹏), Xu G-D(徐根娣),Wu S-H(吴韶辉), He F(何璠). Dynamic response of root border cells and their associated mucilage exudation in soybean to Al stress and recovery. Acta Phytoecol Sin (植物生态学报), 2008, 32(5): 1007–1014 (in Chinese with English abstract)[29]Yu M, Feng Y M, Goldbach H E. Mist culture for mass harvesting of root border cells: aluminum effects. J Plant Nutr Soil Sci, 2006, 169: 670–674[30]Knee E M, Gong F C, Gao M S, Teplitski M, Jones A R, Foxworthy A, Mort A J, Bauer W D. Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source. Mol Plant-Microbe Interact, 2001, 14: 775–784[31]Guinel F C, Mrcully M E. The cells shed by the root cap of Zea: their origin and some structural and physiological properties. Plant Cell Environ, 1987, 10: 565–578[32]Li Y Y, Zhang Y J, Zhou Y, Yang J L, Zheng S J. Protecting cell walls from binding aluminum by organic acids contributes to aluminum resistance. J Integr Plant Biol, 2009, 51: 574–580[33]Lin X-Y(林咸永), Tang J-F(唐剑锋), Li G(李刚), Zhang Y-S(章永松). Aluminum-induced change in cell-wall polysaccharide content of wheat roots in relation to aluminum tolerance of wheat. J Zhejiang Univ (Agric & Life Sci) (浙江大学学报•农业与生命科学版), 2005, 31(6): 724–730 (in Chinese with English abstract)[34]Zakir Hossain A K M, Koyama H, Hara T. Growth and cell wall properties of two wheat cultivars differing in their sensitivity to aluminum stress. J Plant Physiol, 2006, 163: 39–47[35]Wehr J B, Menzies N W, Blamey F P C. Inhibition of cell-wall autolysis and pectin degradation by cations. Plant Physiol Biochem, 2004, 42: 485–492 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
|