欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (09): 1439-1445.

• 研究论文 • 上一篇    下一篇

施氮量对强筋小麦品种济麦20氮硫积累与再分配及籽粒品质的影响

王东;于振文*   

  1. 山东农业大学农业部小麦栽培生理与遗传改良重点开放实验室, 山东泰安 271018
  • 收稿日期:2006-12-11 修回日期:1900-01-01 出版日期:2007-09-12 网络出版日期:2007-09-12
  • 通讯作者: 于振文

Effects of Nitrogen Application Rate on the Accumulation and Redistribution of Nitrogen and Sulphur, and Grain Quality of Wheat

WANG Dong,YU Zhen-Wen*   

  1. Key Laboratory of Wheat Cultivation Physiology & Genetic Improvement, Ministry of Agriculture, Shandong Agricultural University, Tai’an 271018, Shandong, China
  • Received:2006-12-11 Revised:1900-01-01 Published:2007-09-12 Published online:2007-09-12
  • Contact: YU Zhen-Wen

摘要:

为了探讨施氮量对小麦籽粒加工品质调控的生理基础,选用强筋品种济麦20,在山东省龙口市前诸留村和中村(在中村进行了连续两年定位试验),研究了田间高产条件下,小麦氮与硫积累和再分配与籽粒品质的关系及施氮量对其调控的效应。结果表明,随施氮量由0增加至195~204 kg hm-2,开花期营养器官中氮和硫的积累量及开花后吸收分配至籽粒的氮量和硫量增加,开花后各营养器官中的氮向籽粒的再分配量及叶片和穗轴+颖壳中的硫向籽粒的再分配量增加,籽粒中氮和硫含量提高,氮、硫含量比(N/S比)由16.38~16.98降至14.22~14.48,谷蛋白含量比例提高,籽粒品质改善;施氮量为276~285 kg hm-2时,植株氮积累量无显著变化,茎秆+叶鞘中氮转移量减少,残留量增多,抑制了硫向籽粒的转移,导致籽粒硫积累量和含量降低,N/S比升高至15.20~15.27,谷蛋白含量占总蛋白质含量的比例减少,籽粒品质下降。说明施氮量影响了植株氮、硫积累量及向籽粒再分配的数量,调节了籽粒氮和硫含量及N/S比,导致籽粒蛋白质组分比例的差异,进而影响了籽粒的加工品质。使品质改善的适宜籽粒N/S比为14.22~15.27。兼顾高产和优质的适宜施氮量为195~204 kg hm-2

关键词: 冬小麦, 施氮量, 再分配, 籽粒品质

Abstract:

Nitrogen (N) and sulphur (S) are essential plant nutrients, both of them are constituents of protein. About 70% of N and 1/3 of S in vegetative organs were redistributed to the ears after anthesis. The proportion of ear N and S allocated from the redistribution of vegetative organs are 70% and 48%, respectively. The N and S accumulated in vegetative organs before anthesis then redistributed to grains after anthesis are important for the grain quality of wheat. The objectives of this study were to determine the effect of nitrogen application rate on the accumulation and redistribution of N and S, and grain quality of wheat, for providing a theoretical basis on appropriate amount of nitrogen application in production. In the present study, field experiments were carried out using the winter wheat cultivar “Jimai 20”, on two locations, one with alkalihydrolysable nitrogen of 85.87 mg kg-1 and available sulphur of 18.91 mg kg-1 in 0–20 cm soil layer, and treatments of 0, 105, 195, 285 kg ha-1 nitrogen applications, another with alkalihydrolysable nitrogen of 84.00 mg kg-1 and available sulphur of 16.74 mg kg-1 in 0–20 cm soil layer, and treatments of 0, 132, 204, 276 kg ha-1 nitrogen applications, using urea as the nitrogen fertilizer. Half of the nitrogen fertilizer was applied before sowing, the other half topdressed at jointing stage. The treatments were applied also with105 kg P2O5 ha-1 and 135 kg K2O ha-1 before sowing. Each treatment had three replicates, and the plot area was 3 m×8 m =24 m2. The basic seedlings were 150 plant m-2. The results showed that the amount of N and S accumulated in vegetative organs before anthesis and the amount of N and S in grains from the absorption after anthesis, the amount of N redistributed from vegetative organs to grains, the amount of S redistributed from leaves and spike axis + glume to grains increased, the contents of N and S, the proportion of glutenin in grains increased and the grain quality improved, the N/S ratio in grains decreased from16.38–16.98 to 14.22–14.48 with nitrogen applied from 0 to 195–204 kg ha-1. The residual N in stem + sheath increased and the S redistribution was inhibited, the amount of N accumulated in plant were not affected significantly by excessive nitrogen applications of 276–285 kg ha-1, and consequently, resulted in the decrease of sulphur accumulation amount, sulphur content, the proportion of glutenin in grains and the grain quality, and the increase of N/S ratio (increased to 15.20–15.27) in grains. It was suggested that the regulation of nitrogen application rate on protein compositions and grain quality is based on the changes of N and S contents and N/S ratio in grains due to the accumulation and redistribution of N and S. The optimal N/S ratio in grains for quality improvement was 14.22–15.27. The appropriate amount of nitrogen application for high yield and high quality was 195–204 kg ha-1.

Key words: Winter wheat (Triticum aestivum L.), Nitrogen application rate, Sulphur, Redistribution, Grain quality

[1] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[2] 李鑫格, 高杨, 刘小军, 田永超, 朱艳, 曹卫星, 曹强. 播期播量及施氮量对冬小麦生长及光谱指标的影响[J]. 作物学报, 2022, 48(4): 975-987.
[3] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[4] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[5] 谢呈辉, 马海曌, 许宏伟, 徐郗阳, 阮国兵, 郭峥岩, 宁永培, 冯永忠, 杨改河, 任广鑫. 施氮量对宁夏引黄灌区麦后复种糜子生长、产量及氮素利用的影响[J]. 作物学报, 2022, 48(2): 463-477.
[6] 杨志远, 舒川海, 张荣萍, 杨国涛, 王明田, 秦俭, 孙永健, 马均, 李娜. 不同株型杂交籼稻对氮肥的耐受性差异比较[J]. 作物学报, 2021, 47(8): 1593-1602.
[7] 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540.
[8] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[9] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[10] 时晓娟, 韩焕勇, 王方永, 郝先哲, 高宏云, 罗宏海. DPC+化学封顶对不同施氮量下棉花叶片光合生理特性的影响[J]. 作物学报, 2020, 46(9): 1416-1429.
[11] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
[12] 王士红,杨中旭,史加亮,李海涛,宋宪亮,孙学振. 增密减氮对棉花干物质和氮素积累分配及产量的影响[J]. 作物学报, 2020, 46(3): 395-407.
[13] 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析[J]. 作物学报, 2020, 46(12): 1997-2007.
[14] 马艳明, 娄鸿耀, 陈朝燕, 肖菁, 徐麟, 倪中福, 刘杰. 新疆冬小麦地方品种与育成品种基于SNP芯片的遗传多样性分析[J]. 作物学报, 2020, 46(10): 1539-1556.
[15] 张力,陈阜,雷永登. 近60年河北省冬小麦干旱风险时空规律[J]. 作物学报, 2019, 45(9): 1407-1415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!