欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (8): 1516-1524.doi: 10.3724/SP.J.1006.2009.01516

• 耕作栽培·生理生化 • 上一篇    下一篇

甜菜无融合生殖单体附加系M14大孢子发生的超微结构

丁常宏1,申家恒1,*,郭德栋2,尚娅佳1,陆俊萍1   

  1. 1哈尔滨师范大学生命与环境科学学院生物学系,黑龙江哈尔滨150025;2黑龙江大学生命科学学院,黑龙江哈尔滨150080
  • 收稿日期:2009-01-16 修回日期:2009-03-15 出版日期:2009-08-12 网络出版日期:2009-06-10
  • 通讯作者: 申家恒, E-mail: hsdshenjiaheng@yahoo.com.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30470114)资助

Ultrastructure of Megasprogenesis in Faculative Apomictic Monosonic Addition Line M14  of Beta corolliflora of Sugar Beet

DING Chang-Hong1,SHEN Jia-Heng1,*,GUO De-Dong2,SHANG Ya-Jia1,LU Jun-Ping1   

  1. 1College of Life and Environmental Sciences,Harbin Normal University,Harbin 150025,China;2College of Life Sciences,Heilongjiang University,Harbin 150080,China
  • Received:2009-01-16 Revised:2009-03-15 Published:2009-08-12 Published online:2009-06-10
  • Contact: SHEN Jia-Heng, E-mail: hsdshenjiaheng@yahoo.com.cn

摘要:

应用透射电镜技术探求甜菜单体附加系M14 (Beta vulgaris L.,VV+1C, 2n=18+1)有性生殖大孢子与二倍体孢子生殖大孢子发生时的超微结构特征,了解有性生殖和无融合生殖起始细胞的超微结构差别。甜菜单体附加系M14为兼性无融合生殖体,大孢子发生有韭型、蝶须型和蓼型三种类型。韭型和蓼型大孢子发生时均起源于大孢子母细胞,二分体之前从形态结构上难以区分;减数分裂前期I,细胞核中出现核液泡,形成联会复合体,细胞质改组,细胞壁上沉积胼胝质。韭型大孢子发生时,只进行减数第一次分裂,不发生减数第二次分裂,形成二分体,珠孔端二分体细胞退化,合点端二分体细胞发育为二倍体功能大孢子。蓼型二分体的珠孔端细胞在减数第二次分裂前或分裂过程中退化,合点端细胞经减数第二次分裂形成两个细胞,构成三分体,最终合点端大孢子发育为单倍体功能大孢子。蝶须型大孢子发生是M14中唯一的二倍体孢子无融合生殖方式,其大孢子发生时大孢子母细胞不发生减数分裂,不出现核液泡,未形成联会复合体,无细胞质改组,细胞壁上缺乏胼胝质的沉积和缺乏胞间连丝,这些可作为二倍体孢子无融合生殖的鉴定指标。

关键词: 甜菜无融合生殖单体附加系M14, 兼性无融合生殖, 大孢子发生, 韭型, 蝶须型, 蓼型, 超微结构

Abstract:

Research on ultrastructure of megasporogenesis facultative apomictic monosonic addition line M14 of Beta corolliflora of sugar beet by TEM, in order to get the distinctions between the initial cells of sexual reproduction and apomixes. The embryo-sac development of M14 can be classified into three types: Allium odorum-type, Antennaria-type, and Polygonum-type. There was little difference between Allium odorum-type and Polygonum-type until the stage of dyads. At meiosis I, nuclear vacuoles, synaptonemal complexes showed up, cytoplasmic components underwent differentiation, callose deposited in the wall. The megasporocyte of Allium odorum-type only underwent meiosis I to form a dyad, and then the micropylar dyad cell of Allium odorum-type degenerated quickly, while the chalazal one developed into diploid functional megaspore. In Polygonum-type the micropylar dyad cell degenerated quickly, while the chalazal one finished meiosis II to form two unequal-sized megaspore. The megaspore at chalazal end developed into haploid functional megaspore. Antennaria-type was the only fashion of apomictic recreation of M14. Ultrastructure observation on M14 showed the signs of diploid apomictic recreation: no meiosis, no nuclear vacuoles, no cytoplasmic components differentiation, no callose deposition, and no plasmodesmata.

Key words: Monosomic addition line in sugar beet, Facultative apomixes, Megasporogenesis, Allium odorum-type, Antennaria-type, Polygonum-type, Ultrastructure



[1] Bicknell R A, Koltunow A M. Understanding apomixis: Recent advances and remaining conundrums. Plant Cell, 2004, 16: 228-245



[2] Mu X-J(母锡金), Cai X(蔡雪), Sun D-L(孙德兰), Shi G-C(时光春), Zhu Z-Q(朱至清), Apomixis and its application prospect. Acta Agron Sin (作物学报), 2001, 27(5): 590-599 (in Chinese with English abstract)



[3] Ma H(马虹), Wang Y-F(王燕飞), Cao R(曹瑞). Study on embryology of Haloxylon ammodendron: I. Preliminary observation on microsporogenesis and formation of male gametophytes and apomixis in megasporogenesis. J Desert Res (中国沙漠), 2004, 24(6): 768-772 (in Chinese with English abstract)



[4] Liao F-X(廖飞雄), Li Y-N(李育农). Embryology characteristics and results of apomixis in Malus toringoides (Rehd) Hughus (3x). Acta Agric Univ Jiangxiensis (江西农业大学学报), 1996, 18(3): 287-291(in Chinese with English abstract)



[5] Zang G-G(臧巩固), Zhao L-N(赵立宁), Sun J-S(孙敬三). Cytoembryogical studies on apomixis in Boehmeria silestrll. Acta Bot Sin (植物学报), 1993, 39(3): 210-215 (in Chinese with English abstract)



[6] Carman J G, Crane C F, Riera-Lizarazu O. Comparative histology of cell walls during meiotic and apomeiotic megasporogenesis in two hexaploid Australasian Elymus species. Crop Sci, 1991, 31: 1527-1532



[7] Wu C-H(伍成厚), Li D-M(李冬妹), Liang C-Y(梁承邺), Ye X-L(叶秀麟). Ultrastrural observations on megasporogenesis in Doritis pulcherrima (Orchidaceae). J Trop Subtrop Bot (热带与亚热带植物学报), 2005, 13(1): 45-48 (in Chinese with English abstract)



[8] Li L(李灵), Ji C-G(吉成均), You R-L(尤瑞麟). Ultrastructral studies on megasporogenesis in Triticum aestivum L. J Nat Sci Univ Pekinensis (北京大学学报自然科学版), 2001, 37(4): 443-453 (in Chinese with English abstract)



[9] Jane W N, Chiang S H. Ultrastructure of megasporogenesis and early megasporogenesis in Arundo. Intl J Plant Sci, 1996, 157: 418-431



[10] Ji C-J(吉成均), Yang X(杨雄), Li Z-L(李正理). Ultrastructural studies on megaspore formation in Ginkgo biloba. Acta Bot Sin (植物学报), 1999, 41(12): 1323-1326(in Chinese with English abstract)



[11] Naumova T N, Osadtchiy J V, Sharma V K, Dijkhuis P, Ramulu K S. Apomixis in plants: Structural and functional aspects of diplosopry in Poa menoralis and P. palustris. Protoplasma, 1999, 208: 186-195



[12] Guo D-D(郭德栋), Wang G-Z(王桂芝), Wang J-Z(王继志), Li H-Q(李汉卿). Studies on Beta vulgaris L.×B. corolliflora Zoss interspecific crossing. In: Chinese Genetics Research. Beijing: Chinese Science and Technology Press, 1991. pp 93-94 (in Chinese)



[13] Guo D-D(郭德栋), Fang X-H(方晓华), Liu L-P(刘丽萍), Kang C-H(康传红), Li Y(李勇), Wang G-Z(王桂芝). Acquisition and identification of monosonic additional line of apomictic beet. J Yunnan Univ (云南大学学报·自然科学版), 1999, 21(S3): 180-181(in Chinese)



[14] Guo D-D(郭德栋), Liu L-P(刘丽萍), Kang C-H(康传红), Li H-Y(李海英), Han X-Y(韩晓云), Tang Y(唐艳), Wang G-Z(王桂芝). The transmission and reproductive characters of apomictic monosomic addition lines of Beta vulgaris L. J Natl Sci Heilongjiang Univ (黑龙江大学学报·自然科学版), 2001, 18(2): 104-107 (in Chinese with English abstract)



[15] Shen Y(申业), Shen J-H(申家恒), Guo D-D(郭德栋), Fang X-H(方晓华), Liu L-P(刘丽萍). Megasporogenesis and development of female gametophyte in the apomictic monosomic addition line M14 of Beta corolliflora in Sugar Beet. J Wuhan Bot Res (武汉植物学研究), 2006, 24(2): 106-113(in Chinese with English abstract)



[16] Shen Y(申业), Shen J-H(申家恒), Guo D-D(郭德栋), Fang X-H(方晓华), Liu L-P(刘丽萍). Cyto-embryological study of the apomictic monosomic addition line M14 in sugar beet. Acta Bot Boreali-Occident Sin (西北植物学报), 2006, 26(5): 957-963(in Chinese with English abstract)



[17] Shen Y(申业), Shen J-H(申家恒), Guo D-D(郭德栋), Fang X-H(方晓华), Liu L-P(刘丽萍). Dynamics of callose deposition in cell wall during megasporogenesis in the apomictic monosomic addition line M14 of Beta corolliflora of sugar beet. Acta Agron Sin (作物学报), 2006, 32(6): 894-898(in Chinese with English abstract)



[18] Dickinson H G. Cytoplasmic differentiation during microsporogenesis in higher plants. Acta Soc Bot Pol, 1981, 50: 3-12



[19] Koltunow A M. Apomixis: Embryo sac and embryos formed without meiosis or fertilization in ovules. Plant Cell, 1993, 5: 1425-1437



[20] Li D-M(李冬妹), Xia K-F(夏快飞), Ye X-L(叶秀璘), Liang C-Y(梁承邺). Ultrastructural observation on megasporogenesis in Phaius tankervilliae (Aiton) Bl. Acta Sci Nat Univ Sunyatseni (中山大学学报自然科学版), 2005, 144(2): 209-212 (in Chinese with English abstract)



[21] Savidan Y, Carman J G, Dresselhaus T. The Flowering of Apomixis: From Mechanisms to Genetic Engineering Mexico, DF: CIMMYT. IRD. European Commission DGVI (FAIR), 2001. pp 44-63



[22] Rodkiewicz B. Callose deposition during megagametogenesis in two species of angiosperms. Planta, 1970, 93: 39-47



[23] Han Y-R(韩贻仁). Molecular Cell Biology. Beijing: Science Press, 2001. pp 174-175 (in Chinese)



[24] Kapil R N, Bhatnagar A K. Ultrastructure and biology of female gametophyte in flowering plants. Intl Rev Cytol, 1981, 70: 291-341



[25] Karasawa R, Ueda K. Nuclear Vacuoles and synthesis during meiotic prophase in Haplopappus gracilis. Cytologia, 1983, 48: 819-826



[26] Vijayaraghavan M R, Bhatia K. Changes during microsporogenesis, vegetative and generative cell formation: A review based on ultrastructure and cytochemistry. Intl Rev Cytol, 1985, 96: 263-296

[1] 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675.
[2] 程亚娇,范元芳,谌俊旭,王仲林,谭婷婷,李佳凤,李盛蓝,杨峰,杨文钰. 光照强度对大豆叶片光合特性及同化物的影响[J]. 作物学报, 2018, 44(12): 1867-1874.
[3] 刘红艳,周芳,李俊,杨敏敏,周婷,郝国存,赵应忠. 芝麻黄化突变体YL1的叶片解剖学及光合特性[J]. 作物学报, 2017, 43(12): 1856-1863.
[4] 范元芳,杨峰*,刘沁林,谌俊旭,王锐,罗式伶,杨文钰*. 套作荫蔽对苗期大豆叶片结构和光合荧光特性的影响[J]. 作物学报, 2017, 43(02): 277-285.
[5] 李伟,申家恒,郭德栋. 栽培甜菜中央细胞受精前后的超微结构[J]. 作物学报, 2014, 40(01): 166-173.
[6] 李伟,申家恒,郭德栋. 栽培甜菜助细胞退化进程的超微结构观察[J]. 作物学报, 2013, 39(12): 2220-2227.
[7] 王复标,黄福灯,程方民,李兆伟,胡东维,潘刚,毛愉婵. 水稻生育后期叶片早衰突变体的光合特性与叶绿体超微结构观察[J]. 作物学报, 2012, 38(05): 871-879.
[8] 邱义兰,李红,彭克勤,刘珠丽,陈松,刘如石,梁满中,陈良碧. 水稻“斑马叶”突变体b411叶绿体超微结构的观察[J]. 作物学报, 2010, 36(1): 184-190.
[9] 李伟;申家恒;郭德栋;尚娅佳;陆俊萍;丁常宏. 栽培甜菜雌配子体发育中的超微结构[J]. 作物学报, 2009, 35(3): 490-498.
[10] 吕典华,宗学凤,王三根,凌英华,桑贤春,何光华. 两个水稻叶色突变体的光合特性研究[J]. 作物学报, 2009, 35(12): 2304-2308.
[11] 张其芳,刘奕,黄福灯,胡东维,程方民. 水稻不同粒位小穗轴的超微结构差异及其CaM活性的细胞化学定位[J]. 作物学报, 2009, 35(12): 2280-2287.
[12] 杨晓丽;张海洋;郭旺珍;郑永战;苗红梅;魏利斌;张天真. 芝麻核雄性不育系ms86-1小孢子败育过程的超微结构[J]. 作物学报, 2008, 34(11): 1894-1900.
[13] 申业; 申家恒; 郭德栋 ;方晓华 ; 刘丽萍. 甜菜无融合生殖单体附加系M14大孢子发生期间细胞壁胼胝质的变化[J]. 作物学报, 2006, 32(06): 894-898.
[14] 冯波;董树亭;高荣岐;胡昌浩;王空军. 玉米种苗转化过程中盾片的超微结构观察[J]. 作物学报, 2005, 31(02): 234-237.
[15] 韩善华;顾素芳;张红. 豌豆根瘤发育中侵染细胞核的超微结构变化[J]. 作物学报, 2004, 30(07): 719-722.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!