欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (12): 2304-2308.doi: 10.3724/SP.J.1006.2009.02304

• 研究简报 • 上一篇    

两个水稻叶色突变体的光合特性研究

吕典华,宗学凤*,王三根*,凌英华,桑贤春,何光华   

  1. 西南大学农学与生物科技学院/农业西南作物遗传改良与育种重点开放实验室,重庆400716
  • 收稿日期:2009-03-25 修回日期:2009-06-25 出版日期:2009-12-10 网络出版日期:2009-09-10
  • 通讯作者: 宗学凤, E-mail: zxfeng@swu.edu.cn, spirts2005@126.com; 王三根, E-mail: wangsg@swu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30800598)和重庆市水稻玉米良种创新重大专项(CSTC,2007AB1033;2007AA1019,2009BA1006)资助。

Characteristics of Photosynthesis in Two Leaf Color Mutants of Rice

LÜ Dian-Hua,ZONG Xue-Feng*,WANG San-Gen*,LING Ying-Hua,SANG Xian-Chun,HE Guang-Hua   

  1. College of Agronomy and Biotechnology,Southewst University/Key Laboratory of Southwest Crop Genetic Improvement and Breeding,Ministry of Agriculture,Chongqing 400716,China
  • Received:2009-03-25 Revised:2009-06-25 Published:2009-12-10 Published online:2009-09-10
  • Contact: ZONG Xue-Feng, E-mail: zxfeng@swu.edu.cn, spirts2005@126.com; WANG San-Gen, E-mail: wangsg@swu.edu.cn

摘要:

以恢复系缙恢10号为对照,对它的两个叶色突变体ygl5pygl1在孕穗期的光合、荧光特性和叶绿体超微结构进行了研究。结果表明,两个突变体叶绿体内基粒数量明显少于对照,叶绿素含量也大幅下降,其中ygl5表现为叶绿素总体缺乏,pygl1表现为叶绿素b严重缺乏;ygl5pygl1Pn光饱和点光补偿点暗呼吸速率、表观量子效率和羧化效率都显著高于对照,而CO2饱和点CO2补偿点和光呼吸速率则低于对照;Fv/FmΦPSIIqP均显著高于对照,表明突变体ygl5pygl1具有较高的光能捕获效率和转换效率。

关键词: 水稻, 叶色突变体, 光合速率, 叶绿素荧光, 叶绿体超微结构

Abstract:

Two leaf color mutants, ygl5 and pygl1, were identified from the progeny of Jinhui10 treated with EMS, and Jinhui10 was an excellent restorer line bred in the Rice Research Institute of Southwest University. This paper reported their photosynthetic parameters and ultra-structure of chloroplast. Compared with the original parent, both mutants had a decline content of chlorophylls significantly, especially in total chlorophylls for ygl5 and in chlorophyll b for the pygl1. Photosynthetic and chlorophyll fluorescence parameters were determined by LI-6400, the results showed that the net photosynthetic rate (Pn), transpiration rate (Tr) and stomatal conductance (Gs) were higher in the mutants, with higher light compensation point (LCP) and lower light saturation point (LSP) as well as lower CO2 compensation point (CCP) and CO2 saturation point (CSP). Compared with Jinhui 10, the mutants displayed less chloroplast grana and higher optional maximal photochemical efficiency of PSII (Fv/Fm), actual photochemical efficiency of PSII (ΦPSII), and photochemical quenching (qP), suggesting that the mutants have higher light energy capture and conversion efficiencies as well as the electron transport efficiency.

Key words: Oryza sativa L., Leaf color mutants, Photosynthesis rate, Chlorophyll fluorescence, Chloroplast ultra-structure


[1] Lonosky P M, Zhang X S, Honavar V G, Dobbs D L, Fu A, Rodermel S R.A proteomic analysis of maize chloroplast biogenesis. Plant Physiol, 2004, 134: 560-574

[2]Stockinger E J, Walling L L. A chlorophyll a/b-binding protein gene from soybean (Glycine max

[L] Merr.). Plant Physiol, 1994, 104: 1475-1476

[3] Highkin H R, Boardman N K, Goodchild D J. Photosynthetic studies on a pea-mutant deficient in chlorophyll. Plant Physiol, 1969, 44: 1310-1320

[4] Okabe K, Schmid G H, Straub J. Genetic characterization and high efficiency photosynthesis of an aurea mutant of tobacco. Plant Physiol, 1977, 60: 150-156

[5]Preiss S, Thornber J P. Stability of the apoproteins of light-harvesting complex I and II during biogenesis of thylakoids in the chlorophyll b-less barley mutant chlorina f2. Plant Physiol, 1995, 107: 709-717

[6] Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, Mache R, Coupland G, Kuntz M. Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell, 1999, 11: 57-68

[7]Jung K H, Hur J, Ryu C H, Choi Y J, Chung Y Y, Miyao A, Hirochika H, An G H. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463-472

[8] Huang X-Q(黄晓群), Zhao H-X(赵海新), Dong C-L(董春林), Sun Y-Y(孙业盈), Wang P-R(王平荣), Deng X-J(邓晓建). Chlorophyll-deficit rice mutants and their research advances in biology. Acta Bot Boreal-Occident Sin (西北植物学报), 2005, 25(8): 1685-1691 (in Chinese with English abstract)

[9] Xu P-Z(徐培洲), Li Y(李云), Yuan S(袁澍), Zhang H-Y(张红宇), Peng H(彭海), Lin H-H(林宏辉), Wang X-D(汪旭东), Wu X-J(吴先军). Studies of photosystem complexes and chlorophyll synthesis in chlorophyll-deficient rice mutant W1. Sci Agric Sin (中国农业科学), 2006, 39(7): 1299-1305 (in Chinese with English abstract)

[10]Zhao Y, Di L F, Yang S H, Li S C, Zhang Y Z. Chloroplast composition and structural differences in a chlorophyll-reduced mutant of oilseed rape seedlings. Acta Bot Sin, 2001, 43: 877-880

[11] Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29-40

[12]Huang X Q, Wang P R, Zhao H X, Deng X J. Genetic analysis and molecular mapping of a novel chlorophyll-deficit mutant gene in rice. Rice Sci, 2008, 15: 7-12

[13] Liu W Z, Fu Y P, Hu G C, Si H M, Zhu L, Wu C, Sun Z X.Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). Planta, 2007, 226: 785-795

[14] Ye Z-P(叶子飘), Yu Q(于强). Comparison of a new model of light response of photosynthesis with traditional models. J Shenyang Agric Univ (沈阳农业大学学报), 2007, 38(6): 771-775 (in Chinese with English abstract)

[15] Ye Z-P(叶子飘).Application of light response model in estimating the photosynthesis of super hybrid rice combination-II Youming 86.Chin J Ecol (生态学杂志),2007,26(8):1323-1326 (in Chinese with English abstract)

[16] Feng D-L(冯大兰), Liu Y(刘芸), Zhong Z-C(钟章成), Yang J(杨娟), Xie J(谢君). Photosynthesis and chlorophy II fluorescence parameters of the reed (Phragmites communis) grown in the hydro-fluctuation belt of Three Gorges Reservoir Area. Acta Ecol Sin (生态学报), 2008, 28(5): 2013-2021 (in Chinese with English abstract)

[17] Wu Z-M(吴自明). Map-Based Cloning and Functional Study of the Rice Mutant Gene ygl1 Controlling Yellow-Green Leaf. Ph.D. Dissertation of Nanjing Agricultural University, 2007 (in Chinese with English abstract)

[18] Huang X-Q(黄晓群). Genetic Analysis and Gene Mapping on a Novel Yellowing Mutant in Rice. Ph.D. Dissertation of Sichuan Agricultural University, 2006 (in Chinese with English abstract)

[19] Gong H-B(龚红兵), Chen L-M(陈亮明), Diao L-P(刁立平), Sheng S-L(盛生兰), Lin T-Z(林添资), Yang T-N(杨图南), Zhang R-X(张荣铣), Cao S-Q(曹树青), Zhai H-Q(翟虎渠), Dai X-B(戴新宾), Lu W(陆巍), Xu X-M(许晓明). Genetic analysis of chlorophyll-b less mutant in rice and its related characteristics. Sci Agric Sin (中国农业科学), 2001, 34(6): 686-689 (in Chinese with English abstract)

[20]Dai X B, Cao S Q, Xu X M, Lu W, Zhang R X, Xu C C, Chen Y D, Kuang T Y. Study on a mutant with low content chlorophyll b in a high yielding rice and its photosynthesis properties. Acta Bot Sin, 2000, 42: 1289-1294

[21] Zhang R-X(张荣铣), Xu X-M(许晓明), Dai X-B(戴新宾), Lu W(陆巍), Cao S-Q(曹树青). Decline of photosynthetic function and its relation with active oxygen in a rice mutant with low chlorophyll b content. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2003, 29(2): 104-108 (in Chinese with English abstract)

[22] Wang C-T(王聪田), Kuang X-D(匡晓东). Study on physiological and biochemical characteristics of new chlorophyll-deficient rice (Annongbiao 810S). Acta Agric Jiangxi (江西农业学报), 2008, 20(7): 15-16 (in Chinese with English abstract)

[23] Du P, Ling Y H, Sang X C, Zhao F M, Xie R, Yang Z L, He G H. Gene mapping related to yellow green leaf in a mutant line in rice (Oryza sativa L.). Genes & Genomics, 2009, 31: 165-171

[24] Tang Z-Y(汤照云), Wan G-Q(万国强), Liu T(刘彤), Wang Z-Y(王志勇). Chlorophyll fluorescence light kinetics parameters to main cotton varieties in North Xinjiang. Cotton Sci (棉花学报), 2004, 16(3): 166-169 (in Chinese with English abstract)

[25] Li Z-B(李志博), Wei Y-N(魏亦农), Zhang R-H(张荣华), Zhang X-J(张小均). Primary studies on chlorophyll fluorescence characteristics of cotton leaves at different leaf position. Cotton Sci (棉花学报), 2005, 17(3): 189-190 (in Chinese)

[26] Wu L-Q(武立权), Shen S-Q(沈圣泉),Wang R-F(王荣富), Shu Q-Y(舒庆尧). The diurnal variation of photosynthesis of a Xantha mutants in rice (Oryza sativa L.). J Nucl Agric Sci (核农学报), 2007, 21(5): 425-429 (in Chinese with English abstract)


[27] He L-H(贺立红), He L-J(贺立静), Liang H(梁红). Comparisons of the chlorophyll fluorescence parameters in different ginkgo biloba varieties. J South China Agric Univ (华南农业大学学报), 2006, 27(4): 43-46 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!