欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (12): 2280-2287.doi: 10.3724/SP.J.1006.2009.02280

• 研究简报 • 上一篇    下一篇

水稻不同粒位小穗轴的超微结构差异及其CaM活性的细胞化学定位

张其芳,刘奕,黄福灯,胡东维,程方民*   

  1. 浙江大学农业与生物技术学院,浙江杭州310029
  • 收稿日期:2009-05-27 修回日期:2009-07-25 出版日期:2009-12-10 网络出版日期:2009-10-13
  • 通讯作者: 程方民, E-mail: chengfm@zju.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30471020和30871488)资助。

Ultra-Structural Changes of the Vascular Bundles and CaM Immuno-Gold Localization at Phloem Cells among Different Positional Rachillae within a Rice Panicle

ZHANG Qi-Fang,LIU Yi,HUANG Fu-Deng,HU Dong-Wei,CHENG Fang-Min*   

  1. College of Agriculture and Biotechnology,Zhejiang University, Hangzhou 310029,China
  • Received:2009-05-27 Revised:2009-07-25 Published:2009-12-10 Published online:2009-10-13
  • Contact: CHENG Fang-Min,E-mail:chengfm@zju.edu.cn

摘要:

以同一稻穗内的不同部位小穗轴为材料,利用低温包埋、免疫胶体金标记和透射电镜技术,对维管束韧皮部的超微结构差异及其花后动态变化进行观察比较,并对筛管-伴胞细胞中的CaM活性与分布进行细胞化学定位。结果表明,稻穗不同部位小穗轴的维管束组织结构差异,主要表现在中央大维管束的总面积、韧皮部面积和导管面积上,强势粒小穗轴的维管输导组织结构一般优于弱势粒小穗轴;水稻抽穗开花后不同部位小穗轴中央维管束筛管分子和伴胞等细胞的超微结构变化过程大致相同。其中,筛管分子在水稻开花前均已分化成熟,而伴细胞仍保持着较完整的细胞结构特征,之后逐渐呈现出明显的退化迹象;与弱势粒小穗轴相比,强势粒小穗轴在灌浆启动时筛管厚壁和伴细胞中的线粒体等细胞器和胞间连丝的数量丰富、CaM标记密度高,表现出较明显的启动机能和输导生理优势,但至水稻灌浆中期之后,不同粒位间小穗轴的输导生理差异可能并不明显。

关键词: 水稻, 小穗轴, 粒位差异, 超微结构, 钙调素, 细胞定位

Abstract:

The ultra-structure of the vascular bundle phloem in rice rachilla and its time-course during grain filling period were observed for different positional rachillae within a rice panicle by using low-temperature embedding and electron microscopy technique, and CaM distribution in sieve element (SE) and companion cells (CC) of the central vascular phloem was investigated by immuno-gold localization. The results showed that there were obvious difference in the anatomical structure of the vascular bundle between different positional rice rachillae, with the relative large total vascular area, phloem area and vessel area in central vascular bundle for superior positional rachilla within a panicle, indicting that the superior rachilla had better structure for the assimilate transport compared to the inferior positional rachilla; the similar time-course in the degradation pattern of some organelles of SE and CC in central vascular phloem was observed in different positional rachillae at grain filling stage, with the relative delaying degradation and disintegration of SE,CC and phloem parenchyma cells for inferior positional rachilla; the abundant mitochondrion, chloroplast, starch granules and plasmodesmata, and numerous CaM labeling density were found in SE and CC of superior rachilla compared to inferior positional rachilla at beginning filling stage, while no significant differences between two types of rachilla at middle and late filling stages, implying that superior postional rachilla had relatively better transporting function at initial filling stage relative to inferior rachilla.

Key words: Rice(Oryza sativa L.), Rachilla, Positional variation, Ultra-structure, Calmodulin, Immuno-gold localization

[1] Chaudhry F M, Nagato K. Role of vascular bundles in ripening of rice kernel in relation to the locations on panicle. Proc Crop Sci Jpn, 1970, 39: 301-309

[2] Xu Z-J(徐正进), Chen W-F(陈温福), Sun Z-H(孙占惠), Zhang S-L(张树林), Liu L-X(刘丽霞). Distribution of rice grain on panicle axis and its relationship with seed setting in Liaoning. Sci Agric Sin (中国农业科学),2004, 37(7): 963-967 (in Chinese with English abstract)

[3] Jin Y-G(金银根), Ge C-L(葛才林), Wang Y-L(王余龙), Wang Z(王忠). The constructure of vascular network of a rachilla in rice (Oryza sativa L.). Acta Bot Boreal-Occident Sin (西北植物学报), 1999, 19(2): 246-252 (in Chinese with English abstract)

[4] Jing Y-H(荆彦辉), Xu Z-J(徐正进). Research progress in rice vascular bundle characters. J Shenyang Agric Univ (沈阳农业大学学报), 2003, 34(6): 467-471 (in Chinese with English abstract)

[5] Zees Y B. Vascular tissue and transfer cell distribution in rice spikelet. Aust J Bio1 Sci,1972, 28: 411-415
[6] Sheehy J E, Dionora M J, Mitchell P L. Spikelet number, sink size and potential yield in rice. Field Crops Res, 2001, 71: 77-85
[7] Huang Q-Y(黄琪玉), Wu Z-Q(吴志强). The relationship between the ATP activity localized in rice rachilla and grain filling. J Fujian Agric Coll (福建农学院学报), 1989, 18(4): 487-493 (in Chinese with English abstract)
[8] Wang Z(王忠), Gu W-J(顾蕴洁). Structure of racbillae and its changes during flower opening and closure in rice. J Jiangsu Agric Coll (江苏农学院学报), 1995, 16(2): 21-29 (in Chinese with English abstract)
[9] Xiao Y-H(肖应辉), Chen L-Y(陈立云), Yu T-Q(余铁桥), Tang X-R(唐湘如). Relation of the dry matter transfer to some traits of panicle-neck internode in Inter-subspecies hybrid rice. Acta Agron Sin (作物学报), 2001, 27(3): 392-396 (in Chinese with English abstract)
[10] Mohapatra P K, Patel R, Sahu S K. Time of flowering affects grain quality and spikelet partitioning within the rice panicle. Aust J Plant Physiol, 1993, 20: 231-241
[11] Xu Z-J(徐正进), Chen W-F(陈温福), Zhang B-L(张步龙), Yang S-R(杨守仁). Relation between the characters of panicle and vascular bundle in neck-panicle of rice. Acta Agron Sin (作物学报), 1998, 24(1): 47-54 (in Chinese with English abstract)
[12] Ma J(马均), Zhou K-D(周开达), Ma W-B(马文波), Wang X-S(汪旭东). Characteristics of vascular bundles in the first lnternode and grain-filling of heavy panicle hybrid rice.Sci Agric Sin (中国农业科学), 2002, 5(5): 576-579 (in Chinese with English abstract)
[13] Huang H(黄璜). Relation between the tissue of the highest internode and the number of spikelet. Acta Agron Sin (作物学报), 1998, 24(2): 193-200 (in Chinese with English abstract)
[14] Li J-C(李金才), Wei F-C(魏凤彩), Ding X-P(丁显萍). Relationship between vascular bundle system of rachis and rachilla and ear productivity. Acta Agron Sin (作物学报), 1999, 25(3): 315-319 (in Chinese with English abstract)
[15] Zhang D-R(张丹莹), Liu N(刘宁), Chang C-Y(常崇艳). Study on the development of phloem of pedicel vascular bundles in rice. J Beijing Norm Univ (北京师范大学学报), 2006, 42(4): 410-414 (in Chinese with English abstract)
[16] Bush D S. Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Mol Biol, 1995, 46: 95-122
[17] Melin P M, Sommarin M, Sandelius A S, Jergil B. Identification of Ca2+ stimulated phosphoinositide phospholipase C in isolated plant plasma membranes. FEBS Lett, 1987, 223:87-91
[18] Aurisano N, Bertani A, Reggiani R. Involvement of calcium and calmodulin in protein and amino acid metabolism n rice roots under anoxia. Plant Cell Physio1,1995,36: 1525-1529
[19] Dauwalder M,Roux S J,Hardison L. Distribution of calmodulin in pea seedling: Immunocytochemical localization in plumules and root apices. Planta, 1986, 168: 461-470
[20] Zhang G-N(张刚能), Sang Y-M(桑永明).Localization of calmodulin in developing panicle of rice by immunogold-silver staining method. Plant Physiol Commun (植物生理学通讯), 1992, 28(6): 414-416 (in Chinese with English abstract)
[21] Mao G-H(毛国红), Song L-X(宋林霞), Sun D-Y(孙大业). Present progress on calmodulin-binding proteins in plants. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2004, 30(5): 481-488 (in Chinese with English abstract)
[22] Zhao S-F(赵淑芳), Hu D-W(胡东维), Cheng F-M(程方民). Immuno-gold localization of calmodulin interaction between barley and its powdery mildew pathogen. Chin J Cell Biol (细胞生物学杂志), 2006, 26: 640-644 (in Chinese with English abstract)
[23] Wang F, Cheng F M, Zhang G P. Impact of cultivar variation in grain density of rice panicle on grain weight and quality. J Sci Food Agric, 2008, 8: 897-903
[24] Mohapatra P K, Sahu S K. Heterogeneity of primary branch development and spikelet survival in rice panicle in relation to assimilates of primary branches. J Exp Bot, 1991, 42: 871-879
[25] Yang J C, Peng S B, Zhang Z J, Wang Z Q, Visperas R M, Zhu Q S. Grain and dry matter yields and partitioning of assimilations in japonica/indica hybrid rice. Crop Sci, 2002, 42: 766-772
[26] Yang J-C(杨建昌), Liu L-J(刘立军), Wang Z-Q(王志琴), Lang Y-Z(郎有忠), Zhu Q-S(朱庆森). Effects of flowering time of spikelets on endosperm development in rice and its physiological mechanism. Sci Agric Sin (中国农业科学), 1999, 32(3): 44-51 (in Chinese with English abstract)
[27] Umemoto T, Nakamura Y, Ishikura N. Effect of grain location on the panicle on activities involved in starch synthesis in rice endosperm. Phytochemistry, 1994, 36: 843-847
[28] Jian L-C(简令成), Sun L-H(孙龙华), Sun D-L(孙德兰). The localization of ATP activity in phloem transfer tissue of wheat rachilla and its relation to the spikelet development. Acta Bot Sin (植物学报), 1983, 25(4): 313-317 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!