欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (3): 490-498.doi: 10.3724/SP.J.1006.2009.000490

• 耕作栽培·生理生化 • 上一篇    下一篇

栽培甜菜雌配子体发育中的超微结构

李伟1;申家恒1*;郭德栋2;尚娅佳1;陆俊萍1;丁常宏1   

  1. 1哈尔滨师范大学生命与环境科学学院生物系;2黑龙江大学生命科学院,黑龙江哈尔滨150080
  • 收稿日期:2008-09-01 修回日期:2008-12-13 出版日期:2009-03-12 网络出版日期:2009-01-15
  • 通讯作者: 申家恒
  • 基金资助:

    本研究由国家自然科学基金面上项目(30470114)资助

Ultrastructure of Megagametophyte during the Development Period in Suger Beet(Beta vulgaris L.)

LI Wei1;SHEN Jia-Heng1*;Guo De-Dong2;SHANG Ya-Jia1;LU Jun-Ping1;DING Chang-Hong1   

  1. 1College of Life and Environmental Sciences, Harbin Normal University;2College of Life Sciences, Heilongjiang University, Harbin 150080, Heilongjiang, China
  • Received:2008-09-01 Revised:2008-12-13 Published:2009-03-12 Published online:2009-01-15
  • Contact: SHEN Jia-Heng

摘要:

应用透射电镜技术研究栽培甜菜(Beta vulgaris L.)雌配子体发育过程的超微结构特征, 丰富被子植物生殖生物学方面的资料, 并为甜菜相关研究提供借鉴。观察结果表明,栽培甜菜雌配子体发育类型为蓼型。功能大孢子时期核糖体密集, 线粒体和质体分裂以增加数目;单核胚囊时期, 细胞体积增大, 小液泡融合为2个大液泡,分别位于珠孔端和合点端,细胞核增大, 核仁显著, 至发育后期核膜呈微裂齿状,细胞器数量不断增加,珠孔端形成明显的壁内突;二核胚囊时期, 胚囊迅速扩张, 形成中央大液泡, 胞质中细胞器增多;四核胚囊时期除细胞器的数量继续增加外,质体中开始出现淀粉粒;八核胚囊时期相当短暂, 很快细胞化,初期的七细胞八核胚囊中各细胞均以初生壁相隔, 壁上存在胞间连丝, 沿细胞壁分布着众多伸展状粗面内质网和活跃分泌小泡的高尔基体;细胞化后期, 卵、助细胞出现极性分化, 胞质中的众多小泡与细胞膜融合, 参与细胞壁及丝状器的建成;中央细胞在珠孔端与胚囊壁相邻的部位形成壁内突。栽培甜菜雌配子体发育进程中胚囊体积不断增大,细胞器种类与数量呈增加趋势,表明各时期代谢较活跃。在功能大孢子及单核胚囊早期是通过合点端的胞间连丝与珠心细胞以共质体形式相通;在单核胚囊发育后期至细胞化胚囊,是通过珠孔端所形成的壁内突来扩展质膜表面积, 以加强非共质体之间物质的运输。

关键词: 栽培甜菜, 雌配子体, 细胞化, 超微结构

Abstract:

The experiment was conducted by using TEM in order to provide more information for reproductive biology of angiosperm and relative research on sugar beet. The results were as follows: the megagametophyte development type is Polygonum-type. Functional megaspore was rich in ribosomes, and mitochondrium and plastid were increased in number by division. Embryo sac elongated at 1-nucleate stage by fusion of small vacuoles. Nucleus with obvious nucleolus and carnassial nuclear membrane got larger at later stage. Organelle numbers increased and wall ingrowths occurred at the micropylar end. Embryo sac expanded rapidly at 2-nucleate stage due to the formation of central vacuole and the increase of organelles. Starch grains occurred and organelles increased continually at 4-nucleate stage. Eight-nucleate stage was so short that cellularization took place rapidly to form a 7 cell-8 nuclei embryo sac. At early stage of cellularization, all cells were separated by primary wall with many plasmodesmata in it. Abundant rough endoplasmic reticulum stretched along the wall with Golgi bodies and vesicles near it. At late stage of cellularization, egg, and synergids were polarized, large amount of vesicles fused with membrane to join the formation of cell wall and filiform apparatus. Wall ingrowths occurred in central cell at micropylar region near embryo sac wall. In conclusion, embryo sac enlarges gradually with the increase of organelles during megagametophyte development in sugar beet. All the ultrastructural characteristics suggest there is a high level of metabolism in megagametophyte development. Plasmodesmata in the chalazal end wall as a site for symplastic transportation between nucellar cells and embryo sac only appear in functional megaspore and 1-nucleate embryo sac at early stage. Ingrowths at the micropylar end of embryo sac from late stage of 1-nucleate to cellularization enlarge the surface of membrane greatly so as to enhance non-symplastic transportation.

Key words: Suger beet(Beta vulgaris L.), Megagametophyte, Cellularization, Ultrastructure

[1] Hu S-Y(胡适宜), Yang H-Y(杨弘远). Biology of Angiosperm Fertilization(被子植物受精生物学). Beijing: Science Press, 2002. pp 83–85(in Chinese)
[2] Willemse M T M, Van Went J L. The Female Gametophyte. In: Johri B M ed. Embryology of Angiosperm. Berlin: Springer-Verlag, 1984. pp 159–196
[3] De Boer-de-Jeu. Megasporogenesis. A comparative study of the ultrastructural aspects of megasporogenesis in Lilium, Allium and Impatiens. Meded Landbouwhogesch Wageningen, 1978, 16: 1–127
[4] Willemse M T M, Franssen Verheijen M A W. Cell organelles changes during megasporogenesis and megagametogenesis in Gasteria verrucosa (Mill.) Bull Soc Bot Fr Actual Bot, 1978, 125: 187–191
[5] Plisko M A. An electron microscopic investigation of the characteristic features of megagametogenesis in Calendula officinalis L. Bot Zh, 1971, 56: 582–597
[6] Newcomb W. The development of the embryo sac of sunflower Helianthus annuus before fertilization. Can J Bot, 1973, 51: 863–878
[7] Schulz P, Jensen W A. Prefertilization ovule development in Capsella: The dyad, tetrad, developing megaspore, and two- nucleate gametophyte. Can J Bot, 1986, 64: 875–884
[8] Russell, S D. Fine structure of megagametophyte development in Zea mays. Can J Bot, 1979, 57: 1093–1110
[9] Cass D D, Peteya D J, Robertson B L. Megagametophyte development in Hordeum vulgare: 2. Later stages of wall development and morphological aspects of megagametophyte cell differentiation. Can J Bot, 1986, 64: 2327–2336
[10] Folsom M W, Cass D D. Embryo sac development in soybean: Ultrastructure of megasporogenesis and early megagametogenesis. Can J Bot, 1989, 67: 2841–2849
[11] Folsom M W, Cass D D. Embryo sac development in soybean: Cellularization and egg apparatus expansion. Can J Bot, 1990, 68: 2135–2147
[12] Shen J-H(申家恒), Li H-R(李慧蓉), Yin H(殷华). Megasporogenesis and microsporogenesis and the development of their female and male gametophyte in sugar beet. Acta Agron Sin (作物学报), 1986, 12(3): 205–213(in Chinese with English abstract)
[13] Shen J-H(申家恒), Li H-R(李慧蓉), Han X-H(韩晓华), Wang P(王谱). Observations on fertilization in sugar beet. Acta Bot Sin (植物学报), 1986, 28(3): 251–255 (in Chinese with English abstract)
[14] Hoefert L L. Ultrastructure of beta pollen: I. Cytoplasmic constituents. Am J Bot, 1969, 56: 363–368
[15] Bruun L. The mature embryo sac of the sugar beet, Beta vulgaries: A structural investigation. Nord J Bot, 1987, 7: 543–551
[16] Newcomb W, Steeves T A. Helianthus annus embryogenesis: Embryo sac wall projections before and after fertilization. Bot Gaz, 1971, 132: 376–371
[17] Folsom M W, Peterson C M. Ultrastructural aspects of the mature embryo sac of soybean, Glycine max(L.) Merr. Bot Gaz, 1984, 145: 1–10
[18] Sumner M J, Van Caeseele L. The development of the central cell of Brassica campestris prior to fertilization. Can J Bot, 1990, 68: 2553–2563
[1] 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675.
[2] 程亚娇,范元芳,谌俊旭,王仲林,谭婷婷,李佳凤,李盛蓝,杨峰,杨文钰. 光照强度对大豆叶片光合特性及同化物的影响[J]. 作物学报, 2018, 44(12): 1867-1874.
[3] 刘红艳,周芳,李俊,杨敏敏,周婷,郝国存,赵应忠. 芝麻黄化突变体YL1的叶片解剖学及光合特性[J]. 作物学报, 2017, 43(12): 1856-1863.
[4] 范元芳,杨峰*,刘沁林,谌俊旭,王锐,罗式伶,杨文钰*. 套作荫蔽对苗期大豆叶片结构和光合荧光特性的影响[J]. 作物学报, 2017, 43(02): 277-285.
[5] 李伟,申家恒,郭德栋. 栽培甜菜中央细胞受精前后的超微结构[J]. 作物学报, 2014, 40(01): 166-173.
[6] 李伟,申家恒,郭德栋. 栽培甜菜助细胞退化进程的超微结构观察[J]. 作物学报, 2013, 39(12): 2220-2227.
[7] 陈玉珍,张少英,康振生,韩青梅,白朕卿. 甜菜-甜菜坏死黄脉病毒互作过程中过氧化氢的积累与分布[J]. 作物学报, 2012, 38(05): 865-870.
[8] 王复标,黄福灯,程方民,李兆伟,胡东维,潘刚,毛愉婵. 水稻生育后期叶片早衰突变体的光合特性与叶绿体超微结构观察[J]. 作物学报, 2012, 38(05): 871-879.
[9] 邱义兰,李红,彭克勤,刘珠丽,陈松,刘如石,梁满中,陈良碧. 水稻“斑马叶”突变体b411叶绿体超微结构的观察[J]. 作物学报, 2010, 36(1): 184-190.
[10] 丁常宏,申家恒,郭德栋,尚娅佳,陆俊萍. 甜菜无融合生殖单体附加系M14大孢子发生的超微结构[J]. 作物学报, 2009, 35(8): 1516-1524.
[11] 吕典华,宗学凤,王三根,凌英华,桑贤春,何光华. 两个水稻叶色突变体的光合特性研究[J]. 作物学报, 2009, 35(12): 2304-2308.
[12] 张其芳,刘奕,黄福灯,胡东维,程方民. 水稻不同粒位小穗轴的超微结构差异及其CaM活性的细胞化学定位[J]. 作物学报, 2009, 35(12): 2280-2287.
[13] 杨晓丽;张海洋;郭旺珍;郑永战;苗红梅;魏利斌;张天真. 芝麻核雄性不育系ms86-1小孢子败育过程的超微结构[J]. 作物学报, 2008, 34(11): 1894-1900.
[14] 韦存虚;钟方旭;李睿;李东霞;崔月花. 水稻淀粉型胚乳细胞发育中核的衰退和水解酶的细胞化学定位[J]. 作物学报, 2006, 32(02): 298-300.
[15] 魏和平;利容千;王建波;吴甘霖;吴彦. 受淹玉米根内通气组织形成时纤维素酶活性超微细胞化学定位[J]. 作物学报, 2006, 32(01): 84-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!