欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (3): 499-505.doi: 10.3724/SP.J.1006.2009.00499

• 耕作栽培·生理生化 • 上一篇    下一篇

生长秀节对糯玉米淀粉晶体结构和糊化特性的影响

陆大雷1;王德成1;赵久然2;陆卫平1*   

  1. 1扬州大学江苏省作物遗传生理重点实验室/农业部长江中下游作物生理生态与栽培重点开放实验室,江苏扬州225009;2北京市农林科学院玉米研究中心,北京100097
  • 收稿日期:2008-08-14 修回日期:2008-10-06 出版日期:2009-03-12 网络出版日期:2009-01-16
  • 通讯作者: 陆卫平
  • 基金资助:

    本研究由国家自然科学基金项目(30270831),北京市自然科学基金项目(YZPT02-06)资助

Crystalline Structure and Pasting Properties of Starch in Eight Waxy Corn Cultivars Grown in Spring and Autumn

LU Da-Lei1;WANG De-Cheng1;ZHAO Jiu-Ran2;LU Wei-Ping1*   

  1. 1Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Crop Physiology, Ecology and Cultivation in Middle and Lower Reaches of Yangtze River of Ministry of Agriculture, Yangzhou University,Yangzhou 225009,China;2Maize Research Center, Beijing Academy of  Agricultural and Forestry Sciences, Beijing 100097, China
  • Received:2008-08-14 Revised:2008-10-06 Published:2009-03-12 Published online:2009-01-16
  • Contact: LIU Wei-Ping

摘要:

8个糯玉米品种为材料,利用X-射线衍射仪(X-Ray)和快速黏度分析仪(RVA)分析了淀粉在春季和秋季的晶体结构和糊化特性。结果表明,生长季节不影响淀粉的结晶类型,供试糯玉米淀粉样品的X-射线衍射图谱均表现出典型的“A”型衍射特征。然而,淀粉的晶体结构和糊化特性在生长季节间存在显著差异。和春季糯玉米淀粉相比,秋季糯玉米淀粉具有较高的结晶度、尖峰强度、峰值黏度、谷值黏度、终值黏度和崩解值。糯玉米淀粉的回复值较低,且秋季糯玉米淀粉显著低于春季糯玉米淀粉。淀粉的结晶度、尖峰强度和糊化特征值存在显著的基因型差异。相关分析表明,结晶度和各尖峰强度呈两两显著正相关。结晶度和峰值黏度、崩解值极显著正相关(相关系数分别为0.720.85),和谷值黏度、糊化温度显著正相关(相关系数分别为0.520.55),和回复值显著负相关(相关系数-0.49)。糯玉米淀粉糊化特性在不同生长季节中的变化主要由淀粉晶体结构(结晶度和尖峰强度)变化所致。

关键词: 糯玉米, 淀粉, 生长季节, 晶体结构, 糊化特性

Abstract:

X-ray diffraction technique is widely used in the study of crystal characteristics of starch granule. Waxy corn (Zea mays L.) has a higher crystallinity and better pasting properties than other kinds of corn, which is of good value in industry. The pasting properties of corn are affected by genotypes and growing conditions, and even regulated by the cultivation to some extent. Currently, there is rare knowledge on the differences of starch in waxy corn cultivars grown in different seasons. In this study, starch isolated from eight Chinese waxy corn cultivars grown in spring and autumn, were evaluated for crystalline structure and pasting properties using the X-ray Diffraction and Rapid Visco Analyzer, respectively. All starch samples showed a typical A-type diffraction pattern, indicating the growing season had no effect on it. However, the growing season significantly influenced the starch crystallinity and pasting properties. Starch from autumn-sown plant, compared with that from spring-sown plant, showed higher values in crystallinity, peak intensities (2θ = 15°, 17°, 18°, 20°, and 23°, respectively), peak viscosity, trough viscosity, final viscosity, and breakdown. The setback of starch of waxy corn was low, and that grown in autumn was significantly lower than that in spring. The crystallinity, peak intensity, and pasting characteristics were significantly different among the eight waxy corn cultivars. The crystallinity was positively correlated with the peak viscosity (r = 0.72, P < 0.01), breakdown (r = 0.85, P < 0.01), trough viscosity (r = 0.52, P < 0.05), pasting temperature (r = 0.55, P < 0.05), and negatively correlated to setback (r = -0.49, P < 0.05). The differences of pasting properties between growing seasons were mainly caused by the changed of crystallinity and peak intensity of starch in waxy corn.

Key words: Waxy corn, Starch, Growing season, Crystalline structure, Pasting properties

[1]Zobel H F. Starch crystal transformations and their industrial importance. Starch, 1988, 40: 1–7
[2]Singh N, Singh J, Kaur L, Sodhi N S, Gill B S. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem, 2003, 81: 219–231
[3]Tester R F, Karkalas J, Qi X. Starch-composition, fine structure and architecture. J Cereal Sci, 2004, 39: 151–165
[4]Hoover R. Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohyd Polym, 2001, 45: 253–267
[5]Cheetham N W H, Tao L. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohyd Polym, 1998, 36: 277–284
[6]Perera C, Lu Z, Sell J, Jane J. Comparison of physicochemical properties and structures of sugary-2 cornstarch with normal and waxy cultivars. Cereal Chem, 2001, 78: 249–256
[7]Tziotis A, Seetharaman K, Klucinec J D, Keeling P, White P J. Functional properties of starch from normal and mutant corn genotypes. Carbohyd Polym, 2005, 61: 238–247
[8]Singh N, Inouchi N, Nishinari K. Structure, thermal and viscoelastic characteristics of starches separated from normal, sugary and waxy maize. Food Hydrocolloid, 2006, 20: 923–935
[9]Singh N, Sandhu K S, Kaur M. Physicochemical properties including granular morphology, amylose content, swelling and solubility, thermal and pasting properties of starches from normal, waxy, high amylose and sugary corn. Prog Food Biopolymer Res, 2005, 1: 43–54
[10]Duxbury D D. Modified starch functionalities-no chemicals or enzymes. Food Proc, 1989, 50: 35–37
[11]Zaidul I S M, Yamauchi H, Takigawa S, Matsuura-Endo C, Suzuki T, Noda T. Correlation between the compositional and pasting properties of various potato starches. Food Chem, 2007, 105: 164–172
[12]Wilkins M R, Wang P, Xu L, Niu Y, Tumbleson M E, Rausch K D. Variability in starch acetylation efficiency from commercial waxy corn hybrids. Cereal Chem, 2003, 80: 72–75
[13]Lu F-F(陆芳芳), Lu W-P(陆卫平), Liu P(刘萍), Shen X-P(沈新平), Wang J-F(王继丰), Liu X-B(刘小兵). Heterosis analysis of starch RVA viscosity in waxy corn. Acta Agron Sin (作物学报), 2006, 32(4): 503–508 (in Chinese with English abstract)
[14]Lu D-L(陆大雷), Lu W-P(陆卫平), Zhao J-R(赵久然), Wang D-C(王德成). Effects of basic fertilizer treatments and nitrogen topdressing at jointing stage on starch RVA characteristics of waxy maize. Acta Agron Sin (作物学报), 2007, 34(7): 1253–1258 (in Chinese with English abstract)
[15]Hayakawa K, Tanaka K, Nakamura T, Endo S, Hoshino T. Quality characteristics of waxy hexaploid wheat (Triticum aestivum L.): Properties of starch gelatinization and retrogradation. Cereal Chem, 1997, 74: 576–580
[16]Chang Y, Lin J, Lii C. Effect of ethanol concentration on the physicochemical properties of waxy corn starch treated by hydrochloric acid. Carbohyd polym, 2004, 57: 89–96
[17]Myers A M, Morrel M K, James M G, Ball S G. Recent progress toward understanding biosynthesis of amylopectin crystal. Plant Physiol, 2000, 122: 989–997
[18]Cheng F-M(程方民), Zhong L-J(钟连进), Sun Z-X(孙宗修). Effect of temperature at grain filling stage on starch DSC and crystallinity properties of early indica rice. Prog Nat Sci (自然科学进展), 2003, 13(5): 490–494 (in Chinese)
[19]Wang J(王珏), Feng C-N(封超年), Guo W-S(郭文善), Zhu X-K(朱新开), Li C-Y(李春燕), Peng Y-X(彭永欣). Effects of high temperature after anthesis on starch traits of grain in wheat. J. Triticeae Crops (麦类作物学报), 2008, 28(2): 260–265 (in Chinese with English abstract)
[20]Massaux C, Sindic M, Lenartz J, Sinnaeve G, Bodson B, Falisse A, Dardenne P, Deroanne C. Variations in physicochemical and functional properties of starches extracted from European soft wheat (Triticum aestivum L.): The importance to preserve the varietal identity. Carbohyd Polym, 2008, 71: 32–41
[21]Liu Q, Tarn R, Lynch D, Skjodt N M. Physicochemical properties of dry matter and starch from potatoes grown in Canada. Food Chem, 2007, 105: 897–907
[22]Miles M J, Morris V J, Orford R D, Ring S G. The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohyd Res, 1985, 135: 271–281
[23]Sandhu K S, Singh N. Some properties of corn starches: II. Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chem, 2007, 101: 1499–1507
[24]Ji Y, Wong K, Hasjim J, Pollak L M, Duvick S, Jane J, White P J. Structure and function of starch from advanced generations of new corn lines. Carbohyd Polym, 2003, 54: 305–319
[1] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[2] 陈云, 刘昆, 张宏路, 李思宇, 张亚军, 韦佳利, 张耗, 顾骏飞, 刘立军, 杨建昌. 机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响[J]. 作物学报, 2021, 47(8): 1540-1550.
[3] 张骁, 闫岩, 王文辉, 郑恒彪, 姚霞, 朱艳, 程涛. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J]. 作物学报, 2021, 47(8): 1563-1580.
[4] 杨帆, 钟晓媛, 李秋萍, 李书先, 李武, 周涛, 李博, 袁玉洁, 邓飞, 陈勇, 任万军. 再生稻次适宜区迟播栽对不同杂交籼稻淀粉RVA谱的影响[J]. 作物学报, 2021, 47(4): 701-713.
[5] 董二伟, 王劲松, 武爱莲, 王媛, 王立革, 韩雄, 郭珺, 焦晓燕. 行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响[J]. 作物学报, 2021, 47(12): 2459-2470.
[6] 黄素华, 林席跃, 雷正平, 丁在松, 赵明. 强再生力水稻品种碳氮营养与激素生理特征研究[J]. 作物学报, 2021, 47(11): 2278-2289.
[7] 赵春芳,岳红亮,田铮,顾明超,赵凌,赵庆勇,朱镇,陈涛,周丽慧,姚姝,梁文化,路凯,张亚东,王才林. 江苏和东北粳稻稻米理化特性及WxOsSSIIa基因序列分析[J]. 作物学报, 2020, 46(6): 878-888.
[8] 靳舒荣,王艳玫,常悦,王月华,李加纳,倪郁. 不同收获指数甘蓝型油菜β-淀粉酶活性及其基因家族成员的表达分析[J]. 作物学报, 2019, 45(8): 1279-1285.
[9] 卢媛,艾为大,韩晴,王义发,李宏杨,瞿玉玑,施标,沈雪芳. 糯玉米自交系SSR标记遗传多样性及群体遗传结构分析[J]. 作物学报, 2019, 45(2): 214-224.
[10] 杨勇,陆彦,郭淑青,石仲慧,赵杰,范晓磊,李钱峰,刘巧泉,张昌泉. 籼稻背景下导入Wx in等位基因改良稻米食味和理化品质[J]. 作物学报, 2019, 45(11): 1628-1637.
[11] 鱼海跃,韩紫璇,张钰石,段留生,张明才,李召虎. 冠菌素对玉米籽粒灌浆特性与淀粉合成的调控效应[J]. 作物学报, 2019, 45(10): 1535-1543.
[12] 施龙建,文章荣,张世博,王珏,陆卫平,陆大雷. 开花期干旱胁迫对鲜食糯玉米产量和品质的影响[J]. 作物学报, 2018, 44(8): 1205-1211.
[13] 李莎莎,马耕,刘卫星,康娟,陈雨露,胡阳阳,张盼盼,王晨阳. 大田长期水氮处理对土壤氮素及小麦籽粒淀粉糊化特性的影响[J]. 作物学报, 2018, 44(7): 1067-1076.
[14] 李春燕,张雯霞,张玉雪,姚梦浩,丁锦峰,朱新开,郭文善,封超年. 小麦籽粒淀粉与面粉的理化特性差异[J]. 作物学报, 2018, 44(7): 1077-1085.
[15] 胡阳阳, 卢红芳, 刘卫星, 康娟, 马耕, 李莎莎, 褚莹莹, 王晨阳. 灌浆期高温与干旱胁迫对小麦籽粒淀粉合成关键酶活性及淀粉积累的影响[J]. 作物学报, 2018, 44(04): 591-600.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!