作物学报 ›› 2009, Vol. 35 ›› Issue (3): 483-489.doi: 10.3724/SP.J.1006.2009.00483
温福平12;张檀1;张朝晖2;潘映红2*
WEN Fu-Ping12;ZHANG Tan1;ZHANG Zhao-Hui2;PAN Ying-Hong2*
摘要:
用粳稻日本晴(Oryza sativa L. cv.Nipponbare),研究了盐胁迫对水稻种子萌发的抑制作用和赤霉酸(GA3)对盐胁迫的缓解作用;分别以H2O (对照),5 g L-1 NaCl (处理I),5 g L-1 NaCl + 100 μmol L-1 GA3(处理II)培养水稻种苗48 h,提取芽中的蛋白质,利用双向电泳(2-DE)和基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)技术分析了水稻蛋白质组的变化。结果表明,在盐胁迫条件下,日本晴种子的萌发显著受到抑制,而GA3能显著缓解这种抑制作用;用ImageMaster软件分析2-DE凝胶,发现有4个蛋白质斑点表现出显著的变化,在盐胁迫下斑点S1、S2和S3表达下调而斑点S4消失,在GA3与盐共处理时,这4个蛋白质点的表达均有不同程度的恢复;经MALDI-TOF MS分析,其中2个蛋白质斑点(S1,S3)分别被鉴定为isoflavone reductase-like蛋白与葡萄糖磷酸变位酶,这些蛋白可能与GA3提高水稻耐盐性途径相关。
[1]Chitteti B R, Peng Z. Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J Proteome Res, 2007, 6: 1718–1727 [2]Dooki A D, Mayer-Posner F J, Askari H, Zaiee A A, Salekdeh G H. Proteomic responses of rice young panicles to salinity. Proteomics, 2006, 6: 6498–6507 [3]Parker R, Flowers T J, Moore A L, Harpham N V. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot, 2006, 57: 1109–1118 [4]Walia H, Wilson C, Zeng L, Ismail A M, Condamine P, Close T J. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol, 2007, 63: 609–623 [5]Nohzadeh Malakshah S, Habibi Rezaei M, Heidari M, Hosseini Salekdeh G. Proteomics reveals new salt responsive proteins associated with rice plasma membrane. Biosci Biotechnol Biochem, 2007, 71: 2144–2154 [6]Hoffmann-Benning S, Kende H. On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol, 1992, 99: 1156–1161 [7]Raskin I, Kende H. Role of gibberellin in the growth response of submerged deep water rice. Plant Physiol, 1984, 76: 947–950 [8]Kefford N P. Auxin-Gibberellin interaction in rice coleoptile elongation. Plant Physiol, 1962, 37: 380–386 [9]Konishi H, Yamane H, Maeshima M, Komatsu S. Characterization of fructose-bisphosphate aldolase regulated by gibberellin in roots of rice seedling. Plant Mol Biol, 2004, 56: 839–848 [10]Komatsu S, Konishi H. Proteome analysis of rice root proteins regulated by gibberellin. Genomics Proteomics Bioinformatics, 2005, 3: 132–142 [11]Komatsu S, Zang X, Tanaka N. Comparison of two proteomics techniques used to identify proteins regulated by gibberellin in rice. J Proteome Res, 2006, 5: 270–276 [12]Konishi H, Maeshima M, Komatsu S. Characterization of vacuolar membrane proteins changed in rice root treated with gibberellin. J Proteome Res, 2005, 4: 1775–1780 [13]Shen S, Sharma A, Komatsu S. Characterization of proteins responsive to gibberellin in the leaf-sheath of rice (Oryza sativa L.) seedling using proteome analysis. Biol Pharm Bull, 2003, 26: 129–136 [14]Rodríguez A A, Stella A M, Storni M M, Zulpa G, Zaccaro M C. Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Systems, 2006, 2: 7 [15]Liu W-X(刘伟霞), Pan Y-H(潘映红). Sample preparation methods suitable for wheat leaf proteome analysis. Sci Agric Sin (中国农业科学), 2007, 40(10): 2169–2176 (in Chinese with English abstract) [16]Pan R-C(潘瑞炽). Plant Physiology (植物生理学). Beijing: Higher Education Press, 2003. pp 292–293 (in Chinese) [17]Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T Y, Hsing Y I, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437: 693–698 [18]Jiang C, Fu X. GA action: turning on de-DELLA repressing signaling. Curr Opin Plant Biol, 2007, 10: 461–465 [19]Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Iglesias-Pedraz J M, Kircher S, Sch?fer E, Fu X, Fan L M, Deng X W. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 2008, 451: 475–479 [20]Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd N P. Integration of plant responses to environmentally activated phytohormonal signals. Science, 2006, 311: 91–94 [21]Salekdeh G H, Siopongco J, Wade L J, Ghareyazie B, Bennett J. Proteomic analysis of rice leaves during drought stress and recovery. Proteomics, 2002, 2: 1131–1145 [22]Petrucco S, Bolchi A, Foroni C, Percudani R, Rossi G L, Ottonello S. A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases 1s activated in response to sulfur starvation. Plant Cell, 1996, 1: 69–80 [23]Babiychuk E, Kushnir S, Belles-Boix E, Van Montagu M, Inzé D. Arabidopsis thaliana NADPH oxidoreductase homologs confer tolerance of yeasts toward the thiol-oxidizing drug diamide. J Biol Chem, 1995, 270: 26224–26231 [24]Lers A, Burd S, Lomaniec E, Droby S, Chalutz E. The expression of a grapefruit gene encoding an isoflavone reductaselike protein is induced in response to UV irradiation. Plant Mol Biol, 1998, 36: 847–856 [25]Caspar T, Huber S C, Somerville C. Alterations in growth, photosynthesis, and respiration in a starch less mutant of Arabidopsis thaliana (L.) deficient in chloroplast phosphoglucomutase activity. Plant Physiol, 1985, 79: 11–17 [26]Hanson K R, McHale N A. A starchless mutant of Nicotiana sylvestris containing a modified plastid phosphoglucomutase. Plant Physiol, 1988, 88: 838–844 [27]Ke Y-Q(柯玉琴), Pan T-G(潘廷国), Ai Y-F(艾育芳). Effect of NaCl stress on permeability of plasma membrane and substance transformation in germinated rice seeds. Chin J Eco-agric (中国生态农业学报), 2002, 10(4): 10–12 (in Chinese with English abstract) |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[11] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[12] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[13] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[14] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[15] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
|