欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (3): 483-489.doi: 10.3724/SP.J.1006.2009.00483

• 耕作栽培·生理生化 • 上一篇    下一篇

赤霉素对盐胁迫抑制水稻种子萌发的缓解作用的蛋白质组分析

温福平12;张檀1;张朝晖2;潘映红2*   

  1. 1西北农林科技大学林学院,陕西杨凌712100;2中国农业科学院作物科学研究所/国家农作物基因资源与基因改良重大科学工程,北京100081
  • 收稿日期:2008-08-15 修回日期:2008-12-13 出版日期:2009-03-12 网络出版日期:2009-01-16
  • 通讯作者: 潘映红
  • 基金资助:

    本研究由国家自然科学基金项目(30471060),中央级公益性科研院所基本科研业务费专项资金(2060302-2-07),国家高技术研究发展计划(863计划)项目(2008AA10Z115)资助

Proteome Analysis of Relieving Effect of gibberellin on the Inhibition of rice Seed Germination by Salt stress

WEN Fu-Ping12;ZHANG Tan1;ZHANG Zhao-Hui2;PAN Ying-Hong2*   

  1. 1College of Forestry, Northwest A & F University, Yangling 712100,China;2Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081,China
  • Received:2008-08-15 Revised:2008-12-13 Published:2009-03-12 Published online:2009-01-16
  • Contact: PAN Ying-Hong

摘要:

粳稻日本晴(Oryza sativa L. cv.Nipponbare)研究了盐胁迫对水稻种子萌发的抑制作用赤霉酸(GA3)对盐胁迫的缓解作用分别以H2O (对照),5 g L-1 NaCl (处理I)5 g L-1 NaCl + 100 μmol L-1 GA3(处理II)培养水稻种苗48 h,提取芽中的蛋白质,利用双向电泳(2-DE)和基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)技术分析了水稻蛋白质组的变化。结果表明,在盐胁迫条件下,日本晴种子的萌发显著受到抑制,GA3能显著缓解这种抑制作用;用ImageMaster软件分析2-DE凝胶,发现有4个蛋白质斑点表现出显著的变化,在盐胁迫下斑点S1S2S3表达下调而斑点S4消失,在GA3与盐共处理时,这4个蛋白质点的表达均有不同程度的恢复;经MALDI-TOF MS分析,其中2个蛋白质斑点(S1,S3)分别被鉴定为isoflavone reductase-like蛋白与葡萄糖磷酸变位酶,这些蛋白可能与GA3提高水稻耐盐性途径相关。

关键词: 水稻, 赤霉素, 盐胁迫, 蛋白质组

Abstract:

Salinity stress is a major abiotic stress to most plant including rice. It has been reported that gibberellic acid (GA3) can exert a natural beneficial effect on salt stressed rice. In this paper, the effect of salt stress on rice (Oryza sativa L. cv.Nipponbare) seed germination and the effect of GA3 on salt-stressed rice were investigated. A proteomic approach was employed to further understand the relieving effect of gibberellin on the inhibition of rice seed germination by salt stress. The 5-day-old rice seedlings were treated with H2O (control), 5 g L-1 NaCl (treated group I), and 5 g L-1 NaCl + 100 μmol L-1 GA3 (treated group II) for 48 h respectively. The proteins extracted from buds were separated by two-dimensional gel electrophoresis (2-DE) and analyzed with Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS). The results showed that the seed germination of Nipponbare was inhibited by salt stress significantly (see Table 1), while GA3 could reduce the inhibition significantly (see Table 2). Four protein spots showed differential expression in 2-DE. Three of these proteins were down-regulated (spots 1–3) and one protein disappeared (spots 4) under salt stress. Expression levels of these proteins were recovered partly when treated with GA3 and NaCl at the same time (see Fig. 1 and Fig. 2). Two protein spots were identified as isoflavone reductase-like protein and phosphoglucomutase (see Table 3). These differential expression proteins may play important role in the mechanism of the relieving effect of gibberellin on the inhibition of rice germination by salt stress.

Key words: Rice, Gibberellin, Salt stress, Proteome

[1]Chitteti B R, Peng Z. Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J Proteome Res, 2007, 6: 1718–1727
[2]Dooki A D, Mayer-Posner F J, Askari H, Zaiee A A, Salekdeh G H. Proteomic responses of rice young panicles to salinity. Proteomics, 2006, 6: 6498–6507
[3]Parker R, Flowers T J, Moore A L, Harpham N V. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot, 2006, 57: 1109–1118
[4]Walia H, Wilson C, Zeng L, Ismail A M, Condamine P, Close T J. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol, 2007, 63: 609–623
[5]Nohzadeh Malakshah S, Habibi Rezaei M, Heidari M, Hosseini Salekdeh G. Proteomics reveals new salt responsive proteins associated with rice plasma membrane. Biosci Biotechnol Biochem, 2007, 71: 2144–2154
[6]Hoffmann-Benning S, Kende H. On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol, 1992, 99: 1156–1161
[7]Raskin I, Kende H. Role of gibberellin in the growth response of submerged deep water rice. Plant Physiol, 1984, 76: 947–950
[8]Kefford N P. Auxin-Gibberellin interaction in rice coleoptile elongation. Plant Physiol, 1962, 37: 380–386
[9]Konishi H, Yamane H, Maeshima M, Komatsu S. Characterization of fructose-bisphosphate aldolase regulated by gibberellin in roots of rice seedling. Plant Mol Biol, 2004, 56: 839–848
[10]Komatsu S, Konishi H. Proteome analysis of rice root proteins regulated by gibberellin. Genomics Proteomics Bioinformatics, 2005, 3: 132–142
[11]Komatsu S, Zang X, Tanaka N. Comparison of two proteomics techniques used to identify proteins regulated by gibberellin in rice. J Proteome Res, 2006, 5: 270–276
[12]Konishi H, Maeshima M, Komatsu S. Characterization of vacuolar membrane proteins changed in rice root treated with gibberellin. J Proteome Res, 2005, 4: 1775–1780
[13]Shen S, Sharma A, Komatsu S. Characterization of proteins responsive to gibberellin in the leaf-sheath of rice (Oryza sativa L.) seedling using proteome analysis. Biol Pharm Bull, 2003, 26: 129–136
[14]Rodríguez A A, Stella A M, Storni M M, Zulpa G, Zaccaro M C. Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Systems, 2006, 2: 7
[15]Liu W-X(刘伟霞), Pan Y-H(潘映红). Sample preparation methods suitable for wheat leaf proteome analysis. Sci Agric Sin (中国农业科学), 2007, 40(10): 2169–2176 (in Chinese with English abstract)
[16]Pan R-C(潘瑞炽). Plant Physiology (植物生理学). Beijing: Higher Education Press, 2003. pp 292–293 (in Chinese)
[17]Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T Y, Hsing Y I, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437: 693–698
[18]Jiang C, Fu X. GA action: turning on de-DELLA repressing signaling. Curr Opin Plant Biol, 2007, 10: 461–465
[19]Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Iglesias-Pedraz J M, Kircher S, Sch?fer E, Fu X, Fan L M, Deng X W. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 2008, 451: 475–479
[20]Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd N P. Integration of plant responses to environmentally activated phytohormonal signals. Science, 2006, 311: 91–94
[21]Salekdeh G H, Siopongco J, Wade L J, Ghareyazie B, Bennett J. Proteomic analysis of rice leaves during drought stress and recovery. Proteomics, 2002, 2: 1131–1145
[22]Petrucco S, Bolchi A, Foroni C, Percudani R, Rossi G L, Ottonello S. A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases 1s activated in response to sulfur starvation. Plant Cell, 1996, 1: 69–80
[23]Babiychuk E, Kushnir S, Belles-Boix E, Van Montagu M, Inzé D. Arabidopsis thaliana NADPH oxidoreductase homologs confer tolerance of yeasts toward the thiol-oxidizing drug diamide. J Biol Chem, 1995, 270: 26224–26231
[24]Lers A, Burd S, Lomaniec E, Droby S, Chalutz E. The expression of a grapefruit gene encoding an isoflavone reductaselike protein is induced in response to UV irradiation. Plant Mol Biol, 1998, 36: 847–856
[25]Caspar T, Huber S C, Somerville C. Alterations in growth, photosynthesis, and respiration in a starch less mutant of Arabidopsis thaliana (L.) deficient in chloroplast phosphoglucomutase activity. Plant Physiol, 1985, 79: 11–17
[26]Hanson K R, McHale N A. A starchless mutant of Nicotiana sylvestris containing a modified plastid phosphoglucomutase. Plant Physiol, 1988, 88: 838–844
[27]Ke Y-Q(柯玉琴), Pan T-G(潘廷国), Ai Y-F(艾育芳). Effect of NaCl stress on permeability of plasma membrane and substance transformation in germinated rice seeds. Chin J Eco-agric (中国生态农业学报), 2002, 10(4): 10–12 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[15] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!