欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (02): 290-296.doi: 10.3724/SP.J.1006.2008.00290

• 耕作栽培·生理生化 • 上一篇    下一篇

华北平原免耕冬小麦生长发育特征研究

李素娟;陈继康;陈阜;李琳;张海林*   

  1. 中国农业大学农学与生物技术学院/农业部作物栽培与耕作学重点实验室, 北京100094

  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2008-02-12 网络出版日期:2008-02-12
  • 通讯作者: 张海林

Characteristics of Growth and Development of Winter Wheat under Zero-tillage in North China Plain

LI Su-Juan,CHEN Ji-Kang,CHEN Fu,LI Lin,ZHANG Hai-Lin*

  

  1. College of Agronomy and Biotechnology, China Agricultural University /Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, Beijing 100094, China

  • Received:1900-01-01 Revised:1900-01-01 Published:2008-02-12 Published online:2008-02-12
  • Contact: ZHANG Hai-Lin

摘要:

2004—2006年在河北栾城中国科学院农业生态试验站开展了不同耕作方式下冬小麦生长发育特征及其影响因素的比较研究。冬小麦基本苗数和分蘖率在不同耕作方式间差异显著, 表现为免耕<旋耕<翻耕。免耕处理冬小麦分蘖成穗率高于翻耕和免耕处理, 但基本苗数低, 2004—2005生长季比翻耕和旋耕处理分别低28.9%和29.7%, 2005—2006生长季分别低11.7%和10.0%; 免耕处理冬小麦株高、叶面积指数、地上部干物质积累和产量均低于翻耕和旋耕处理, 其中叶面积指数在2004—2005和2005—2006生长季的最高值分别为2.9和6.0, 产量比翻耕降低30.1%和27.19%、比旋耕降低15.3%和25.20%。免耕可保持耕层较高的土壤水分含量, 总体上高于翻耕和旋耕处理; 免耕处理在冬小麦苗期和返青期表现出明显的“降温效应”, 耕层土壤日均温度低于翻耕和旋耕, 冬小麦出苗和返青较翻耕和旋耕分别晚1~3 d和4~5 d。

关键词:

免耕, 冬小麦, 生长发育, 华北平原

Abstract:

The agro-ecosystem in North China Plain is challenged by water shortage, environmental pollution with burning crop stalks and high cost. Practice of conservation tillage is very essential in North China Plain for saving water, reducing environment pollution and tillage cost, increasing the crop productivity and organic matter content of soil. With the extension of conservation techniques, zero-tillage arouses more and more attention in the area. Some investigators found yield increasing with zero-tillage, but some experiments indicated the weaker seedling and revival stage delaying of winter wheat under zero-tillage as compared with conventional tillage. The objectives of this study were to evaluate the growth and development of winter wheat under zero-tillage treatment in North China Plain and to explore the reason of the influence of zero-tillage. The experiment using the winter wheat cultivar “Kenong 9204” with three tillage treatments including conventional tillage with stubble incorporating (CT), rotary tillage with residue returning (RT), and zero-tillage with stubble direct drilling (ZT) was conducted in Luancheng Ecological Experimental Station of Chinese Academy of Sciences during 2004–2006 growth seasons. To keep similar rate of seedling emergence in all treatments, seeding rate was from 165.0 kg ha-1 (in CT and RT treatments) increased to 262.5 kg ha-1 in ZT treatment. In addition to the characteristics of growth and development of wheat, the plough layer temperature and soil water con-tent were measured. Soil temperature was measured by thermoelectric couple every day. Soil moisture was observed by TDR (plough layer soil) and neutron instrument (deeper than 20 cm) every 14 d during winter and every 7 d for the rest time. The basic seedling and tillers in three treatments ranked significantly as ZT<RT<CT (P≤0.05), but the percentage of seed-setting tillers in ZT treatment was higher than that in CT treatment. The number of basic seedling in ZT was lower than that in CT by 28.9% and 11.7% in 2004–2005 and 2005–2006 growth seasons, and lower than that in RT by 11.7% and 10.0%, respectively. The plant height, leaf area index, dry weight of wheat shoot and grain yield were the lowest in ZT treatment because of the deficient population. In ZT treatment, the maximum leaf area indices were 2.9 and 6.0 in two growth seasons, respectively. Grain yield of ZT reduced by 30.1% and 27.2% as compared with that of CT in the two growth seasons and decreased by 15.3% and 25.2% than that of RT, respectively. The water content in 0–30 cm soil layer in ZT treatment was significantly higher (P<0.05) than that in CT treatment during the whole growing period. The topsoil temperature was the lowest in ZT treatment from seedling to revival stages, indicating ZT had a “lower temperature effect”, which delays the emergence and revival of seedlings and reduce tillering rate in winter wheat. The time of seedling emergence and revival in ZT was late 1–3 and 4–5 d than that in CT and RT, respectively.

Key words:

Zero-tillage, Winter wheat, Growth and development, North China Plain

[1] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[2] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[3] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[4] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[5] 王慰亲, 唐启源, 陈元伟, 贾巍, 罗友谊, 王小卉, 郑华斌, 熊娇军. 水稻机械精量有序抛秧栽培的产量形成和生长发育特征研究[J]. 作物学报, 2021, 47(5): 942-951.
[6] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[7] 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540.
[8] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[9] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[10] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
[11] 赵小红,白羿雄,王凯,姚有华,姚晓华,吴昆仑. 种植密度对2个青稞品种抗倒伏及秸秆饲用特性的影响[J]. 作物学报, 2020, 46(4): 586-595.
[12] 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析[J]. 作物学报, 2020, 46(12): 1997-2007.
[13] 马艳明, 娄鸿耀, 陈朝燕, 肖菁, 徐麟, 倪中福, 刘杰. 新疆冬小麦地方品种与育成品种基于SNP芯片的遗传多样性分析[J]. 作物学报, 2020, 46(10): 1539-1556.
[14] 张力,陈阜,雷永登. 近60年河北省冬小麦干旱风险时空规律[J]. 作物学报, 2019, 45(9): 1407-1415.
[15] 吴亚鹏,贺利,王洋洋,刘北城,王永华,郭天财,冯伟. 冬小麦生物量及氮积累量的植被指数动态模型研究[J]. 作物学报, 2019, 45(8): 1238-1249.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!