欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (12): 2225-2233.doi: 10.3724/SP.J.1006.2009.02225

• 耕作栽培·生理生化 • 上一篇    下一篇

超级稻花后强、弱势粒多胺浓度变化及其与籽粒灌浆的关系

谈桂露,张耗,付景,王志琴,刘立军,杨建昌*   

  1. 扬州大学江苏省作物遗传生理重点实验室,江苏扬州225009
  • 收稿日期:2009-06-26 修回日期:2009-09-09 出版日期:2009-12-10 网络出版日期:2009-10-13
  • 通讯作者: 杨建昌,E-mail:jcyang@yzu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30771274),国家科技攻关计划项目(2006BAD02A13-3-2),江苏省自然科学基金项目(BK2009005),2008年中央级科研院所基本科研业务费专项基金(农业)(200803030)和教育部高等学校博士学科点专项科研基金项目(200811170002)资助。

Post-Anthesis Changes in concentrations of Polyamines in Superior and Inferior Apikelets and Their Relation with Grain Filling of Super Rice

TAN Gui-Lu,ZHANG Hao,FU Jing,WANG Zhi-Qin,LIU Li-Jun,YANG Jian-Chang*   

  1. Key Laboratory of Crop Genetics and Physiology of Jiangsu Province,Yangzhou University,Yangzhou 225009,China
  • Received:2009-06-26 Revised:2009-09-09 Published:2009-12-10 Published online:2009-10-13
  • Contact: YANG Jian-Chang,E-mail:jcyang@yzu.edu.cn

摘要:

4个超级稻品种[两优培九和II084(杂交籼稻)、淮稻9号和武粳15(粳稻)]为材料,2个高产品种[汕优63(杂交籼稻)、扬辐粳8(粳稻)]为对照,测定了结实期强、弱势粒中腐胺(Put)、亚精胺(Spd)和精胺(Spm)浓度和灌浆速率,分析了它们之间的关系并用化学调控的方法进行了验证。结果表明,强势粒的最大灌浆速率、平均灌浆速率和糙米重,超级稻品种与对照品种差异较小,弱势粒的灌浆速率和粒重表现为超级稻品种显著低于对照品种。灌浆期强、弱势粒的PutSpdSpm浓度变化均成单峰值曲线。Put的峰值浓度和平均浓度,弱势粒高于强势粒。SpdSpm峰值浓度和平均浓度,弱势粒显著低于强势粒,超级稻品种低于对照品种。籽粒平均灌浆速率和糙米重与Put浓度呈极显著负相关,与SpdSpm浓度以及Spd/PutSpm/Put呈极显著正相关。灌浆初期对稻穗喷施SpdSpm,增强了弱势粒中蔗糖合成酶、ADP葡萄糖焦磷酸化酶和可溶性淀粉合成酶活性,提高了弱势粒灌浆速率、结实率和粒重,喷施Put或多胺合成抑制剂 (MGBG)的结果则相反。说明多胺参与水稻籽粒灌浆的调控,超级稻品种弱势粒较低的SpdSpm浓度及较低的Spd/PutSpm/Put值是其灌浆速率小、粒重轻的一个重要生理原因。

关键词: 超级稻, 强势粒, 多胺, 结实率, 灌浆速率

Abstract:

Success in super rice breeding has been considered a great progress in rice production in China. However, many unfilled inferior spikelets limit the realization of great yield. As polyamines have been frequently described as endogenous plant growth regulators or intracellular messengers mediating physiological processes, this study investigated whether and how polyamines are involved in the regulating post-anthesis development of rice spikelets. Four super rice cultivars, Liangyoupeijiu and II you 084 (indica hybrids), Huaidao 9 and Wujing 15 (japonica), and two high-yielding check cultivars, Shanyou 63 (indica hybrid) and Yangfujing 8 (japonica), were field grown. Concentrations of putrescine (Put),spermidine (Spd) and spermine (Spm)in both inferior and superior spikelets during the grain filling period and grain filling rate were determined. The relationship between polyamine concentrations and grain filling rate were analyzed, and chemical regulators were applied to verify the roles of polyamines in grain filling. The results showed that the maximum grain filling rate, mean grain filling rate, and brown rice weight for superior spikelets showed small difference between the super rice and check rice, but those of inferior spikelets were significantly lower for super rice than for check rice cultivars. Changes in concentrations of polyamines in grains exhibited single peak during the grain filling period. The peak and mean concentrations of Put were greater in inferior than in superior spikelets. The peak and mean concentrations of Spd and Spm were greater in the superior than in the inferior, and greater in the check rice than in the super rice. The mean grain filling rate and brown rice weight were negatively and very significantly correlated with the Put concentrations, and positively and very significantly correlated with Spd and Spm concentrations, Spd/Put, and Spm/Put. Application of Spd or Spm to panicle at the early grain filling stage significantly enhanced activities of sucrose synthetase, adenine diphosphoglucose pyrophosphorylase, and soluble starch synthetase in inferior spikelets, and significantly increasedgrain filling rate, seed setting rate and grain weight of inferior spikelets. Application of Put or methylglyoxal-bis (guanylhydrazone) (MGBG, an inhibitor of S-adenosyl-L-methionine decarboxylase) exhibited an opposite effect. The results suggest that polyamines play a role in regulating grain filling. Low concentrations of Spd and Spm and low Spd/Put and Spm/Put may be an important physiological reason for the small grain filling rate and low grain weight of inferior spikelets in super rice.

Key words: Super rice, Superior spikelet, Inferior spikelet, Polyamine, Seed setting rate, Grain filling rate


[1] Kato T, Takeda K. Associations among characters related to yield sink capacity in space-planted rice. Crop Sci, 1996, 36: 1135-1139

[2] Peng S, Cassman K G, Virmani S S, Sheehy J, Khush G S. Yield potential trends of tropical since the release of IR8 and its challenge of increasing rice yield potential. Crop Sci, 1999, 39: 1552-1559

[3] Peng S, Khush G S, Virk P, Tang Q, Zou Y. Progress in ideotype breeding to increase rice yield potential. Field Crops Res, 2008, 108: 32-38

[4] Yang J, Peng S, Zhang Z, Wang Z, Visperas R M, Zhu Q. Grain and dry matter yields and partitioning of assimilates in japonica/indica hybrids, Crop Sci, 2002, 42: 766-772

[5] Ao H-J(敖和军), Wang S-H(王淑红), Zou Y-B(邹应斌), Peng S-B(彭少兵), Tang Q-Y(唐启源), Fang Y-X(方远祥), Xiao A-M(肖安民), Chen Y-M(陈玉梅), Xiong C-M(熊昌明). Study on yield stability and dry matter characteristics of super hybrid rice. Sci Agric Sin (中国农业科学),2008,41(7): 1927-1936 (in Chinese with English abstract)

[6] Zhu Q-S(朱庆森), Cao X-Z(曹显祖), Luo Y-Q(骆亦奇). Growth analysis on the progress of grain filling in rice. Acta Agron Sin (作物学报), 1988, 14(3): 182-193 (in Chinese with English abstract)

[7] Iwasaki Y, Mae T, Makino A, Ohira K, Ojima K. Nitrogen accumulation in the inferior spikelet of rice ear during ripening. Soil Sci Plant Nutr, 1992, 38: 517-525

[8] Umemoto T, Nakamura Y, Ishikura N. Effect of grain location on the panicle on activities involved in starch synthesis in rice endosperm. Phytochemistry, 1994, 36: 843-847

[9] Yang J, Zhang J, Wang Z, Liu K, Wang P. Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. J Exp Bot, 2006, 57: 149-160

[10] Cheng S, Zhuang J, Fan Y, Du J, Cao L. Progress in research and development on hybrid rice: A super-domesticate in China. Ann Bot, 2007, 100: 959-966

[11] Liang J, Zhang J, Cao X. Grain sink strength may be related to the poor grain filling of indica-japonica rice (Oryza sativa) hybrids. Physiol Plant, 2001, 112: 470-477

[12] Mohapatra P K, Sahu S K. Heterogeneity of primary branch development and spikelet survival in rice in relation to assimilates of primary branches. J Exp Bot, 1991, 42: 871-879

[13] Yang J, Zhang J, Huang Z, Wang Z, Zhu Q, Liu L. Correlation of cytokinin levels in the endosperm and roots with cell number division activity during endosperm development in rice. Ann Bot, 2002, 90: 369-377

[14] Nakamura Y, Yuki K. Changes in enzyme activities associated with carbohydrate metabolism during development of rice endosperm. Plant Sci, 1992, 82: 15-20

[15] Jeng T L, Wang C S, Chen C L, Sung J M. Effects of grain position on the panicle on starch biosynthetic enzyme activity in developing grains of rice cultivar Tainung 67 and its NaN3-induced mutant. J Agric Sci, 2003, 141: 303-311

[16] Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008, 40: 1370-1374

[17] Bais H P, Ravishankar G A. Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tissue Organ Cult, 2002, 69: 1-34

[18] Tomosugi M, Ichihara K, Saito K. Polyamines are essential for the synthesis of 2-ricinoleoyl phosphatidic acid in developing seeds of castor. Planta, 2006, 223: 349-358

[19] Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S. Overexpression of spermidine synthase enhances tolerance to multiple environmental stress and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol, 2004, 45: 712-722

[20] Yang J-C(杨建昌), Zhu Q-S(朱庆森), Wang Z-Q(王志琴), Cao X-Z(曹显祖). Polyamines in rice grains and their relations with grain plumpness and grain weight. Acta Agron Sin (作物学报), 1997, 23(4): 385-392 (in Chinese with English abstract)

[21] Wang Z-Q(王志琴), Zhang H(张耗), Wang X-M(王学明), Zhang Z-C(张自常), Yang J-C(杨建昌). Relationship between concentrations of polyamines in filling grains and rice quality. Acta Agron Sin (作物学报), 2007, 33(12): 1922-1927 (in Chinese with English abstract)

[22] Richards F J. A flexible growth function for empirical use. J Exp Bot, 1959, 10: 290-300

[23] Sen K, Choudhuri M M, Ghosh B. Changes in polyamine contents during development and germination of rice seeds. Phytochemistry, 1981, 20: 631-633

[24] Lin P P C, Egli D B, Li G M, Meckel L. Polyamine titer in the embryonic axis and cotyledons of Glycine max (L.) during seed growth and maturation. Plant Physiol, 1984, 103: 273-280

[25] Liang Y L, Lur H S. Conjugated and free polyamine levels in normal and aborting maize kernels. Crop Sci, 2002, 42: 1217-1224

[26] Flores H E, Galston A W. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol, 1982, 69: 701-706

[27] Yang J, Zhang J, Wang Z, Zhu Q, Liu L. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Res, 2003, 81: 69-81

[28] Bouchereau A, Aziz A, larther F, Martin-Tanguy J. Polyamines and environmental challenges: recent development. Plant Sci, 1999, 140:103-125

[29] Capell T, Bassie L, Christou P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA, 2004, 101: 9909-9914

[30] Papadakis A K, Roubelakis-Angelakis K A. Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant. Correlations with age, cell division/expansion, and differentiation. Plant Physiol, 2005, 220: 826-837

[31] DiTomaso J M, Shaff J E, Kochian L V. Putrescine-induced wounding and its effects on membrane integrity and ion transport processes in roots of intact corn seedlings. Plant Physiol, 1989, 90: 988-995

[32] Hummel I, Amrani A E, Gouesbet G, Hennion F, Couée I.Involvement of polyamines in the interacting effects of low temperature and mineral supply on Pringlea antiscorbutica (Kerguelen cabbage) seedlings. J Exp Bot, 2004, 55:1125-1134

[33] Martin C, Smith A M. Starch biosynthesis. Plant Cell, 1995, 7: 971-985

[34] Ahmadi A, Baker D A. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul, 2001, 35: 81-91

[35] Hurkman W J, McCue K F, Altenbach S B, Korn A, Tanaka C K, Kothari K M, Johnson E L, Bechtel D B, Wilson J D, Anderson O D, DuPont F M. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Sci, 2003, 164: 873-881

[36] Davies P J. The plant hormones: their nature, occurrence and function. In: Davies P J ed. Plant Hormones, Biosynthesis, Signal Transduction, Action! Dordrecht: Kluwer Academic Publishers, 2004. pp 1-15
[1] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[2] 董二伟, 王劲松, 武爱莲, 王媛, 王立革, 韩雄, 郭珺, 焦晓燕. 行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响[J]. 作物学报, 2021, 47(12): 2459-2470.
[3] 纪龙,申红芳,徐春春,陈中督,方福平. 基于非线性主成分分析的绿色超级稻品种综合评价[J]. 作物学报, 2019, 45(7): 982-992.
[4] 许阳东,朱宽宇,章星传,王志琴,杨建昌. 绿色超级稻品种的农艺与生理性状分析[J]. 作物学报, 2019, 45(1): 70-80.
[5] 徐云姬, 许阳东, 李银银, 钱希旸, 王志琴, 杨建昌. 干湿交替灌溉对水稻花后同化物转运和籽粒灌浆的影响[J]. 作物学报, 2018, 44(04): 554-568.
[6] 苗永杰, 阎俊, 赵德辉, 田宇兵, 闫俊良, 夏先春, 张勇, 何中虎. 黄淮麦区小麦主栽品种粒重与籽粒灌浆特性的关系[J]. 作物学报, 2018, 44(02): 260-267.
[7] 王志刚,梁红伟,高聚林,于晓芳,孙继颖,苏治军,胡树平,余少波,李雅剑,魏淑丽,杨哲. 玉米弱势粒库活性与籽粒内源激素及多胺含量的关系[J]. 作物学报, 2017, 43(08): 1196-1204.
[8] 魏颖娟,赵杨,邹应斌*. 不同穗型超级稻品种籽粒灌浆特性[J]. 作物学报, 2016, 42(10): 1516-1529.
[9] 吕晓康,温晓霞,廖允成,刘杨*. 外源多胺对小麦小花退化的调控机制[J]. 作物学报, 2016, 42(09): 1391-1401.
[10] 杜红阳,刘骨挺,杨青华,刘怀攀. 小麦胚中不同形态多胺含量的变化及其与耐旱性的关系[J]. 作物学报, 2016, 42(08): 1224-1232.
[11] 韦还和,孟天瑶,李超,张洪程,戴其根,马荣荣,王晓燕,杨筠文. 超级稻甬优12不同产量水平群体的钾素营养特性[J]. 作物学报, 2016, 42(07): 1047-1057.
[12] 张伟杨,徐云姬,钱希旸,李银银,王志琴,杨建昌* . 小麦籽粒游离多胺对土壤干旱的响应及其与籽粒灌浆的关系[J]. 作物学报, 2016, 42(06): 860-872.
[13] 张同祯,李永生,李玥,姚海梅,赵娟,王婵,赵阳,王汉宁,方永丰, 胡晋. 多胺氧化酶(PAO)调控光诱导玉米中胚轴伸长的生理机制[J]. 作物学报, 2016, 42(05): 734-742.
[14] 韦还和,孟天瑶,李超,张洪程,史天宇,马荣荣,王晓燕,杨筠文,戴其根,霍中洋,许轲,魏海燕,郭保卫. 籼粳交超级稻甬优538花后氮素积累模型与特征分析[J]. 作物学报, 2016, 42(04): 540-550.
[15] 韦还和,孟天瑶,李超,张洪程,史天宇,马荣荣,王晓燕,杨筠文,戴其根,霍中洋,许轲,魏海燕,郭保卫. 施硅量对甬优系列籼粳交超级稻产量及相关形态生理性状的影响[J]. 作物学报, 2016, 42(03): 437-445.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!