[1] Dungan G H. Response of corn to extremely deep planting. Agron J, 1950, 42: 256–257
[2] Hoshikawa K. Underground organs of the seelings and the systematics of gramineae. Bot Gazette, 1969, 130:192–203
[3] 张磊, 刘志增, 黄亚群, 陈景堂, 祝丽英. 46个玉米自交系耐深播特性分析. 河北农业大学学报, 2007, 30(3): 18–21
Zhang L, Liu Z Z, Hang Y Q, Chen J T, Zhu L Y. Deep-planting tolerance characteristics analysis on 46 maize inbred lines. J Agric Univ Hebei, 2007, 30(3):18–21 (in Chinese with English abstract)
[4] 赵光武, 马攀, 王建华, 王国英. 不同玉米自交系耐深播能力鉴定及对深播胁迫的生理响应. 玉米科学, 2009, 17(5): 9–13
Zhao G W, Ma P, Wang J H, Wang G Y. Identification of deep-seeding tolerance in different maize inbred lines and their physiological response to deep-seeding condition. J Maize Sci, 2009, 17(5): 9–13 (in Chinese with English abstract)
[5] 杜金友, 张桂荣, 蔡爱军, 刘艳芳, 高桂花, 靳占忠. 玉米中胚轴长度与内源激素关系的研究, 玉米科学, 2008, 16(3): 70–73
Du J Y, Zhang G R, Cai A J, Liu Y F, Gao G H, Jin Z Z. Relationship between the mesocotyl elongation and hormones in maize(Zea mays L.). J Maize Sci, 2008, 16(3): 70–73
[6] Stuart D A, Durnam D J, Jones R L.Cell elongation and cell division in elongating lettuce hypocotyl sections . Planta, 1977, 135:249–255
[7] Cosgrove D J. Enzymes and other agents that enhance cell wall extensibility. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 391–417
[8] 李莉, 马殿荣, 陈温福, 孙健, 梁茜. 杂草稻中胚轴伸长的细胞形态学观察. 沈阳农业大学学报, 2012, 43: 749–753
Li L, Ma D R, Chen W F, Sun J, Liang Q. Observation of mesocotyl cell morphology of weed rice. J Shenyang Agric Univ, 2012, 43:749–753 (in Chinese with English abstract)
[9] 周德宝. 植物激素与细胞骨架的排向. 植物生理学通讯, 2005, 41:224–228
Zhou D B. Plant hormones and layout of cytoskeleton. Plant Physiol Commun, 2005, 41: 224–228 (in Chinese with English abstract)
[10] Cosgrove D J. Expansive growth of plant cell walls. PIam Physiol Biochem, 2000: 109–124
[11] Karpinska B, Karlsson M, Schinkel H, Streller S, Suss K H, Melzer M, Wingsle G. A novel superoxide dismutase with a high isoelectric point in higher plants expression, regulation, and protein localization. Plant Physiol, 2001, 126:1668–1677
[12] Jiang M, Zhang J. Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. Planta, 2002, 215: 1022–1030
[13] Frahry G, Schopfer P. NADH-stimulated, cyanide-resistant superoxide production in maize coleoptiles analyzed with a tetrazolium-based assay. Planta, 2001, 212: 175–183
[14] Yoda H, Yamaguchi Y, Sano H. Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. Plant Physiol, 2003, 132: 1973–1981
[15] Suzuki Y, Yanagisawa H. Purification and properties of maize polyamine oxidases: a flavprotein. Plant Cell Physiol, 1980, 21: 1085–1094
[16] Smith T A. Polyamine oxidases (oat seedlings). Methods Enzymol, 1983, 94: 311–314
[17] Angelini R, Federico R, Bonfeute P. Maize polyamine oxidase: antibody production and ultrastructural localization. Plant Physiol, 1995, 145: 686–692
[18] Tavladoraki P, Schininà M E, Cecconi F. Maize polyamine oxidase: primary structure from protein and cDNA sequencing. FEBS Lett, 1998, 426: 62–66
[19] Binda C, Coda A, Angelini R, Federico R, Ascenzi P, Mattevi A. A 30 Å long U-shaped catalytic tunnel in the crystal structure of polyamine oxidase. Structure, 1999, 7: 265–276
[20] Cervelli M, Tavladoraki P, Di Agostino S, Angelini R, Federico R, Mariottini P. Isolation and characterization of three polyamine oxidase genes from Zea mays. Physiology, 2000, 38: 667–677
[21] Federico R, Angelini R. Occurrence of diamine oxidase in the apoplast of pea epicotyls. Planta, 1986, 167: 300–302
[22] Laurenzi M, Rea G, Federico R, Tavladoraki P, Angelini R. De-etiolation causes a phytochrome-mediated increase of polyamine oxidase expression in outer tissues of the maize mesocotyl: a role in the photomodulation of growth and cell wall differentiation. Planta, 1999, 208:146–154
[23] Cona A, Cenci F, Cervelli M, Federico R, Mariottini P, Moreno S, Angelini R. Polyamine oxidase,a hydrogen peroxide-producing enzyme, is up-regulated by light and down-regulated by auxin in the outer tissues of the maize mesocotyl. Plant Physiol, 2003, 131: 803–813
[24] 汪天, 郭世荣, 刘俊, 高洪波. 多胺氧化酶检测方法的改进及其在低氧水培黄瓜根系中的应用. 植物生理学通讯, 2004, 40: 358–360
Wang T, Guo S R, Liu J, Gao H B. An improved method for measuring polyamine oxidase and its application to the study of cucumber root under hypoxic stress. Plant Physiol Commun, 2004, 40: 358–360 (in Chinese with English abstract)
[25] Brennan T, Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol, 1977, 59: 411–416
[26] Orozco-Cardenas M, Ryan C A. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid. Proc Natl Acad Sci USA, 1999, 96: 6553–6557
[27] 张志良, 瞿伟菁. 植物生理学实验指导. 北京, 高等教育出版社, 2003. pp 123–124
Zhang Z L, Qu W J. Plant Physiology Experiment. Beijing: Higher Education Press, 2003. pp 123–124
[28] Syros T. Activity and isoforms of peroxidase, lignin and anatomy, during adventitious rooting cuttings of Ebenus cretica L. J Plant Physiol, 2004, 161: 69–77
[29] Tanaka K, Nakamura Y, Asami T, Yoshida S, Matsuo T, Okamoto S. Physiological roles of brassinosteroids in early growth of Arabidopsis: brassinosteroids have a synergistic relationship with gibberellin as well as auxin in light-grown hypocotyl elongation. J Plant Growth Regul, 2003, 22: 259–271
[30] 苏国兴, 刘友良. 高等植物体内的多胺分解代谢及其主要产物的生理作用. 植物学通报, 2005, 22: 408–418
Su G X,Liu Y L. Function of polyamine catabolism and its main catabolic products in higher plants. Chin Bull Bot,2005,22: 408–418 (in Chinese with English abstract)
[31] Karpinska B, Karlsson M, Schinkel H, Streller S, Suss K H, Melzer M, Wingsle G. A novel superoxide dismutase with a high isoelectric point in higher plants expression, regulation, and protein localization. Plant Physiol, 2001, 126:1668–1677
[32] 王艺, 韦小丽. 不同光照对植物生长、生理生化和形态结构影响的研究进展. 山地农业生物学报, 2010, 29: 353–359
Wang Y, Wei X L. Advance on the effects of different light environments on growth, physiological biochemistry and morphostructure of plant. J Mountain Agric& Biol, 2010, 29: 353–359 (in Chinese with English abstract)
[33] 杜成凤, 刘天学, 蒋寒涛, 李潮海. 弱光胁迫及光恢复对玉米幼苗活性氧代谢的影响. 核农学报, 2011, 25: 570–575
Du C F, Liu T X, Jiang H T, Li C H. Effects of low light stress and light recovery on reactive oxygen metabolism of maize seedlings. J Nuclear Agric Sci, 2011, 25: 570–575 (in Chinese with English abstract)
[34] 苏国兴. 多胺分解代谢在大豆生长发育和耐盐生理中的作用. 南京农业大学博士学位论文, 江苏南京, 2006
Su G X. The Roles of Polyamine Catabolism in Development and Salt Tolerance of Soybean Seedlings. PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2006 (in Chinese with English abstract)
[35] Hohl M, Greiner H, Schopfer P. The cryptic-growth response of maize coleoptiles and its relationship to H2O2-dependent cell wall stiffening. Physiol Plant, 1995, 94: 491–498
[36] Zhao G W, Wang J H. Effect of gibberellin and uniconazole on mesocotyl elongation of dark-grown maize under different seeding depths. Plant Prod, 2008, 11: 423–429
[37] Rea G, Lurenzi M, ranquilli E, D’Ovidio R, Federico R, Angelini R. Developmentally and wound-regulated expression of the gene encoding a cell wall copper amine oxidase in chickpea seedlings. FEBS Lett, 1998, 437: 177–182
[38] Schopfer P. Hydrogen peroxide-mediated cell-wall stiffening in vitro in maize coleoptiles. Planta, 1996, 199: 43–49
[39] Sebela M, Radova A, Angelini R, Tavladoraki P, Frebort I I, Pec P. FAD-containing polyamine oxidases:a timely challenge for researchers in biochemistry and physiology of plants. Plant Sci, 2001, 160: 197–207 |