欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (05): 734-742.doi: 10.3724/SP.J.1006.2016.00734

• 耕作栽培·生理生化 • 上一篇    下一篇

多胺氧化酶(PAO)调控光诱导玉米中胚轴伸长的生理机制

张同祯1,**,李永生1,**,李玥2,姚海梅1,赵娟1,王婵1,赵阳1,王汉宁1,方永丰1, 胡晋3,*   

  1. 1甘肃省作物遗传改良与种质创新重点实验室 / 甘肃省干旱生境作物学重点实验室 / 甘肃农业大学农学院,甘肃兰州730070;2甘肃省农业科学院作物研究所,甘肃兰州730070;3浙江大学农业与生物技术学院,浙江杭州310058
  • 收稿日期:2015-09-16 修回日期:2016-03-02 出版日期:2016-05-12 网络出版日期:2016-03-11
  • 通讯作者: 方永丰, E-mail: fangyf@gsau.edu.cn;胡晋, E-mail: jhu@zju.edu.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)前期研究专项(2012CB722902),国家自然科学基金项目(31371708,31201279)和甘肃省干旱生境作物学重点实验室开放基金项目(GSCS-2012-10)资助。

Physiological Mechanism Regulating Light-induced Mesocotyl Elongation by Polyamine Oxidase (PAO) in Maize

ZHANG Tong-Zhen1,**,LI Yong-Sheng1,**,LI Yue2,YAO Hai-Mei1,ZHAO Juan1,WANG Chan1,ZHAO Yang1,WANG Han-Ning1,FANG Yong-Feng1,*,Hu Jin3,*   

  1. 1Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement / Gansu Provincial Key Laboratory of Aridland Crop Science / Gansu Agricultural University,Lanzhou 730070, China; 2Institute of Crop Science, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; 3 College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
  • Received:2015-09-16 Revised:2016-03-02 Published:2016-05-12 Published online:2016-03-11
  • Contact: 方永丰, E-mail: fangyf@gsau.edu.cn;胡晋, E-mail: jhu@zju.edu.cn
  • Supported by:

    This study was supported by National Basic Research Program of China (973 Program, 2012CB722902),the National Natural Science Foundation of China (31371708,31201279), and Research Program Sponsored by Gansu Provincial Key Laboratory of Aridland Crop Science (GSCS201210).

摘要:

以长中胚轴玉米自交系PH4CV为材料,在黑暗和光照两种处理条件下研究了玉米中胚轴长度与多胺氧化酶(Polyamine Oxidase, PAO)活性、H2O2含量、过氧化物酶(peroxidase, POD)活性及木质素含量的关系。通过添加5 mmolL-1 PAO抑制剂2-羟乙基肼(2-hydroxyethylhydrazine, 2-HEH)和5 mmolL-1 H2O2清除剂N,N’-二甲基硫脲(N,N’-Dimethylthiourea, DMTU)及组织化学染色,研究了影响中胚轴伸长的H2O2来源及其积累部位。采用实时荧光定量PCR(qRT-PCR)方法,探究了光对ZmPAO基因表达的影响。结果表明,光照处理显著抑制了玉米中胚轴的伸长,同时显著增加该部位的PAO活性、H2O2含量、POD活性及木质素含量。相关性分析表明,玉米中胚轴长度与PAO活性、H2O2含量和木质素含量呈极显著负相关,与POD活性呈显著负相关;PAO活性与H2O2含量、POD活性和木质素含量均呈正相关。外源PAO抑制剂和H2O2清除剂处理试验,玉米中胚轴表皮纵切面细胞长度显微观察及中胚轴H2O2组织化学染色表明,PAO氧化分解多胺(Polyamines, PAs)产生的H2O2参与了中胚轴细胞伸长的生理调控,从而抑制了中胚轴的伸长。表达分析表明,ZmPAO基因在黑暗环境下的表达量相对稳定,光刺激0.5 h后表达量迅速升高,3 h后达到最大值,随后逐渐下降,10 h后趋于稳定。本研究表明,PAO在接受光刺激后活性升高,氧化分解PAs产生H2O2,从而诱导POD氧化胞壁的单木质醇并聚合为木质素,使细胞壁硬化,造成细胞伸长受阻。研究结果为进一步探讨PAO活性调控光诱导玉米中胚轴伸长的生理机制和阐明玉米中胚轴对光逆境的响应机理提供了理论依据。

关键词: 玉米, 光照, 中胚轴伸长, 多胺氧化酶, 表达分析

Abstract:

In this study, maize inbred line PH4CV was culturedunder in MS mediumunder both dark and light conditionsto investigate the relationship of length of mesocotyl with activity of Polyamine Oxidase(PAO), activity of peroxidase (POD), contents of H2O2 ang lignin. In addition, after treated with5 mmolL-1 2-hydroxyethylhydrazine (2-HEH) and 5 mmolL-1 N, N’-Dimethylthiourea (DMTU), the origin and accumulation site of H2O2 in mesocotyl elongationwere assessed by using histochemical stainingmethod and the effect of lighton expression of ZmPAO gene was evaluated. The results indicated that the elongation of mesocotyl was significantly inhibited while the contents of H2O2 and lignin and the activities of POD and PAO were enhanced by light. Correlation analysis showed that the length of mesocotylwas negatively correlated with the PAO activity, H2O2 content, POD activity, and lignin content, and the PAO activity was positively correlated with the H2O2 content, the POD activity, and the lignin content. The assay with 2-HEH and DMTU, the microgram of epidermal cells, and histochemical localizationof H2O2 revealed that H2O2 participated in mesocotyl elongation, in which PAO catalyzedpolyamines (PAs)degradation to produce H2O2resulting in the inhibition of mesocotyl elongation.Results of qRT-PCR revealed that the expression level of ZmPAO was relatively stable in dark and rose rapidly of0.5 hour after exposing to light, with a maximum value after three hours of light treatment, then declined gradually, and finally showed a steady level after ten hours. This study suggests that the activity of PAO can be promoted by light treatment, and initiate the PAs-mediated induction of H2O2, resulting in the oxidation of lignin monomers on cell wall by POD. The produced free radicalsare then transformed into lignin in a polyforming process which marked the cell wall hardened and cell elongationinhibited . This study may provide a theoretical basis for understanding the physiological mechanism underlying the PAO-mediated mesocotyl elongation and gain insights into the response of maize mesocotyl to the light stress.

Key words: Maize, Light, Mesocotyl elongation, Polyamine oxidase, Expression analysis

[1]  Dungan G H. Response of corn to extremely deep planting. Agron J, 1950, 42: 256–257
[2]  Hoshikawa K. Underground organs of the seelings and the systematics of gramineae. Bot Gazette, 1969, 130:192–203
[3]  张磊, 刘志增, 黄亚群, 陈景堂, 祝丽英. 46个玉米自交系耐深播特性分析. 河北农业大学学报, 2007, 30(3): 18–21
    Zhang L, Liu Z Z, Hang Y Q, Chen J T, Zhu L Y. Deep-planting tolerance characteristics analysis on 46 maize inbred lines. J Agric Univ Hebei, 2007, 30(3):18–21 (in Chinese with English abstract)
[4]  赵光武, 马攀, 王建华, 王国英. 不同玉米自交系耐深播能力鉴定及对深播胁迫的生理响应. 玉米科学, 2009, 17(5): 9–13
    Zhao G W, Ma P, Wang J H, Wang G Y. Identification of deep-seeding tolerance in different maize inbred lines and their physiological response to deep-seeding condition. J Maize Sci, 2009, 17(5): 9–13 (in Chinese with English abstract)
[5] 杜金友, 张桂荣, 蔡爱军, 刘艳芳, 高桂花, 靳占忠. 玉米中胚轴长度与内源激素关系的研究, 玉米科学, 2008, 16(3): 70–73
    Du J Y, Zhang G R, Cai A J, Liu Y F, Gao G H, Jin Z Z. Relationship between the mesocotyl elongation and hormones in maize(Zea mays L.). J Maize Sci, 2008, 16(3): 70–73
[6]  Stuart D A, Durnam D J, Jones R L.Cell elongation and cell division in elongating lettuce hypocotyl sections . Planta, 1977, 135:249–255
[7]  Cosgrove D J. Enzymes and other agents that enhance cell wall extensibility. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 391–417
[8]  李莉, 马殿荣, 陈温福, 孙健, 梁茜. 杂草稻中胚轴伸长的细胞形态学观察. 沈阳农业大学学报, 2012, 43: 749–753
    Li L, Ma D R, Chen W F, Sun J, Liang Q. Observation of mesocotyl cell morphology of weed rice. J Shenyang Agric Univ, 2012, 43:749–753 (in Chinese with English abstract)
[9] 周德宝. 植物激素与细胞骨架的排向. 植物生理学通讯, 2005, 41:224–228
    Zhou D B. Plant hormones and layout of cytoskeleton. Plant Physiol Commun, 2005, 41: 224–228 (in Chinese with English abstract)
[10] Cosgrove D J. Expansive growth of plant cell walls. PIam Physiol Biochem, 2000: 109–124
[11] Karpinska B, Karlsson M, Schinkel H, Streller S, Suss K H, Melzer M, Wingsle G. A novel superoxide dismutase with a high isoelectric point in higher plants expression, regulation, and protein localization. Plant Physiol, 2001, 126:1668–1677
[12] Jiang M, Zhang J. Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. Planta, 2002, 215: 1022–1030
[13] Frahry G, Schopfer P. NADH-stimulated, cyanide-resistant superoxide production in maize coleoptiles analyzed with a tetrazolium-based assay. Planta, 2001, 212: 175–183
[14] Yoda H, Yamaguchi Y, Sano H. Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. Plant Physiol, 2003, 132: 1973–1981
[15] Suzuki Y, Yanagisawa H. Purification and properties of maize polyamine oxidases: a flavprotein. Plant Cell Physiol, 1980, 21: 1085–1094
[16] Smith T A. Polyamine oxidases (oat seedlings). Methods Enzymol, 1983, 94: 311–314
[17] Angelini R, Federico R, Bonfeute P. Maize polyamine oxidase: antibody production and ultrastructural localization. Plant Physiol, 1995, 145: 686–692
[18] Tavladoraki P, Schininà M E, Cecconi F. Maize polyamine oxidase: primary structure from protein and cDNA sequencing. FEBS Lett, 1998, 426: 62–66
[19] Binda C, Coda A, Angelini R, Federico R, Ascenzi P, Mattevi A. A 30 Å long U-shaped catalytic tunnel in the crystal structure of polyamine oxidase. Structure, 1999, 7: 265–276
[20] Cervelli M, Tavladoraki P, Di Agostino S, Angelini R, Federico R, Mariottini P. Isolation and characterization of three polyamine oxidase genes from Zea mays. Physiology, 2000, 38: 667–677
[21] Federico R, Angelini R. Occurrence of diamine oxidase in the apoplast of pea epicotyls. Planta, 1986, 167: 300–302
[22] Laurenzi M, Rea G, Federico R, Tavladoraki P, Angelini R. De-etiolation causes a phytochrome-mediated increase of polyamine oxidase expression in outer tissues of the maize mesocotyl: a role in the photomodulation of growth and cell wall differentiation. Planta, 1999, 208:146–154
[23] Cona A, Cenci F, Cervelli M, Federico R, Mariottini P, Moreno S, Angelini R. Polyamine oxidase,a hydrogen peroxide-producing enzyme, is up-regulated by light and down-regulated by auxin in the outer tissues of the maize mesocotyl. Plant Physiol, 2003, 131: 803–813
[24] 汪天, 郭世荣, 刘俊, 高洪波. 多胺氧化酶检测方法的改进及其在低氧水培黄瓜根系中的应用. 植物生理学通讯, 2004, 40: 358–360
    Wang T, Guo S R, Liu J, Gao H B. An improved method for measuring polyamine oxidase and its application to the study of cucumber root under hypoxic stress. Plant Physiol Commun, 2004, 40: 358–360 (in Chinese with English abstract)
[25] Brennan T, Frenkel C. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol, 1977, 59: 411–416
[26] Orozco-Cardenas M, Ryan C A. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid. Proc Natl Acad Sci USA, 1999, 96: 6553–6557
[27] 张志良, 瞿伟菁. 植物生理学实验指导. 北京, 高等教育出版社, 2003. pp 123–124
    Zhang Z L, Qu W J. Plant Physiology Experiment. Beijing: Higher Education Press, 2003. pp 123–124
[28] Syros T. Activity and isoforms of peroxidase, lignin and anatomy, during adventitious rooting cuttings of Ebenus cretica L. J Plant Physiol, 2004, 161: 69–77
[29] Tanaka K, Nakamura Y, Asami T, Yoshida S, Matsuo T, Okamoto S. Physiological roles of brassinosteroids in early growth of Arabidopsis: brassinosteroids have a synergistic relationship with gibberellin as well as auxin in light-grown hypocotyl elongation. J Plant Growth Regul, 2003, 22: 259–271
[30] 苏国兴, 刘友良. 高等植物体内的多胺分解代谢及其主要产物的生理作用. 植物学通报, 2005, 22: 408–418
    Su G X,Liu Y L. Function of polyamine catabolism and its main catabolic products in higher plants. Chin Bull Bot,2005,22: 408–418 (in Chinese with English abstract)
[31] Karpinska B, Karlsson M, Schinkel H, Streller S, Suss K H, Melzer M, Wingsle G. A novel superoxide dismutase with a high isoelectric point in higher plants expression, regulation, and protein localization. Plant Physiol, 2001, 126:1668–1677
[32] 王艺, 韦小丽. 不同光照对植物生长、生理生化和形态结构影响的研究进展. 山地农业生物学报, 2010, 29: 353–359
    Wang Y, Wei X L. Advance on the effects of different light environments on growth, physiological biochemistry and morphostructure of plant. J Mountain Agric& Biol, 2010, 29: 353–359 (in Chinese with English abstract)
[33] 杜成凤, 刘天学, 蒋寒涛, 李潮海. 弱光胁迫及光恢复对玉米幼苗活性氧代谢的影响. 核农学报, 2011, 25: 570–575
    Du C F, Liu T X, Jiang H T, Li C H. Effects of low light stress and light recovery on reactive oxygen metabolism of maize seedlings. J Nuclear Agric Sci, 2011, 25: 570–575 (in Chinese with English abstract)
[34] 苏国兴. 多胺分解代谢在大豆生长发育和耐盐生理中的作用. 南京农业大学博士学位论文, 江苏南京, 2006
    Su G X. The Roles of Polyamine Catabolism in Development and Salt Tolerance of Soybean Seedlings. PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2006 (in Chinese with English abstract)
[35] Hohl M, Greiner H, Schopfer P. The cryptic-growth response of maize coleoptiles and its relationship to H2O2-dependent cell wall stiffening. Physiol Plant, 1995, 94: 491–498
[36] Zhao G W, Wang J H. Effect of gibberellin and uniconazole on mesocotyl elongation of dark-grown maize under different seeding depths. Plant Prod, 2008, 11: 423–429
[37] Rea G, Lurenzi M, ranquilli E, D’Ovidio R, Federico R, Angelini R. Developmentally and wound-regulated expression of the gene encoding a cell wall copper amine oxidase in chickpea seedlings. FEBS Lett, 1998, 437: 177–182
[38] Schopfer P. Hydrogen peroxide-mediated cell-wall stiffening in vitro in maize coleoptiles. Planta, 1996, 199: 43–49
[39] Sebela M, Radova A, Angelini R, Tavladoraki P, Frebort I I, Pec P. FAD-containing polyamine oxidases:a timely challenge for researchers in biochemistry and physiology of plants. Plant Sci, 2001, 160: 197–207

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[15] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!