欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (3): 428-434.doi: 10.3724/SP.J.1006.2010.00428

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用核心种质发挥及评价花生抗黄曲霉资源

姜慧芳1,任小平1,王圣玉1,张晓杰1,黄家权1,廖伯寿1,Corley C HOLBROOKA2,Hari D UPADHYAYA3   

  1. 1中国农业科学院油料作物研究所,湖北武汉 430062; 2 USDA-ARS, P O Box 748, Tifton, Georgia 31793, USA; 3 International Crops Research Institute for the Semi-Arid Tropics, Patancheru, A P 502 324, India
  • 收稿日期:2009-07-09 修回日期:2009-10-02 出版日期:2010-03-12 网络出版日期:2009-12-21
  • 通讯作者: peanutlab@oilcrops.cn
  • 基金资助:

    本研究由国际科技支撑计划项目(2006BAD13B05-2),国家自然科学基金项目(30571132),国家科技基础条件平台项目(2005DKA21002-13)和农作物种质资源保护项目(NB05-070401-32)资助。

Development and Evaluation of Peanut Germplasm with Resistance to Aspergillus flavus from Core Collection

JIANG Hui-Fang1,REN Xiao-Ping1,WANG Sheng-Yu1,ZHANG Xiao-Jie1,HUANG Jia-Quan1,LIAO Bo-Shou1,Corley C HOLBROOKA2, Hari D UPADHYAYA3   

  1. 1 Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; 2 USDA-ARS, PO Box 748, Tifton, Georgia 31793, USA; 3 International Crops Research Institute for the Semi-Arid Tropics, Patancheru, AP 502 324, India
  • Received:2009-07-09 Revised:2009-10-02 Published:2010-03-12 Published online:2009-12-21
  • Contact: peanutlab@oilcrops.cn

摘要:

黄曲霉菌极大地限制全世界的花生生产和产业发展,且生产上抗性品种较少,我国花生育种和生产中的抗性资源缺乏,迫切需要发掘抗黄曲霉菌种质。本研究以中国花生核心种质561ICRISAT微核心种质155,鉴定了黄曲霉侵染和产毒抗性,发掘出抗黄曲霉侵染和产毒种质各8份,包括具优良农艺性状的抗黄曲霉产毒种质51002-6。鉴定结果表明,ICRISAT花生微核心种质中抗黄曲霉侵染和产毒种质的频率高于中国花生核心种质;普通型花生资源中抗黄曲霉侵染种质的频率较高,龙生型资源中抗黄曲霉产毒种质的频率较高根据SSR分析,鉴定出与生产上推广应用的优良品种中花5号、中花6号、中花12和远杂9102遗传距离较远的抗黄曲霉产毒种质ICG12625和抗侵染种质ICG4750,拓宽了我国花生品种改良的遗传基础。根据抗病基因产物的NBS类型保守域设计简并引物对抗黄曲霉种质的DNA进行PCR扩增、克隆、测序和分析,获得了1RGA片段。

关键词: 花生核心种质, 抗黄曲霉资源, 农艺性状, SSR遗传多样性, RGA

Abstract:

Peanut (Arachis hypogaea L.), one of the main oil and cash crops in the world, is easily susceptible to Aspergillus flavus, resulting huge loss in its quality, so Aspergillus flavus infection greatly limits peanut production and industry in China. Therefore, it is imperative to develop new peanut germplasm with resistance to Aspergillus flavus in breeding program. The core collection is well accepted as a useful way to improve the efficiency of crop germplasm evaluation and utilization, which contains a subset of accessions from the entire collection that covers the most of available genetic information. In the present study, a total of 561 accessions of Chinese peanut core collection and 155 accessions of ICRISAT mini core collection were identified. Eight varieties with resistance to Aspergillus flavus invasion and aflatoxin production each were developed, including one (51002-6) with elite agronomic traits. The peanut germplasm with resistance to Aspergillus flavus invasion and aflatoxin production in ICRISAT mini core were more than those in Chinese peanut core collection. In addition, the percentages of accessions with resistance to Aspergillus flavus invasion in var. hypogaea, and accessions resistant to aflatoxin production in var. hirsuta were relatively high in comparison with others. Genetic diversity in the resistant peanut selections was evaluated based on morphological traits and SSR approach. ICG12625 with resistance to aflatoxin production and ICG4750 with resistance to aflatoxin invasion were evaluated by SSR, the genetic distance of them with high-yielding cultivars such as Zhonghua 5, Zhonghua 6 and Zhonghua 12 and Yuanza 9102 was larger. The primers were designed based on the conserved NBS-LRR domains of the disease resistance genes sequence, one RGA (Resistance gene analog) from genomic DNA of six different peanuts with resistance to Aspergillus flavus was obtained through PCR.

Key words: Peanut core collection, Varieties with Resistance to Aspergillus flavus, Agronomic Traits, SSR genetic diversity, RGA


[1]        
Liang X-Q(粱炫强), Pan R-Z(潘瑞炽), Bin J-H(宾金华). Progress on mechanism of resistance to Aspergillus infection in peanut. Chin Oil Crops Sci (中国油料作物学报), 2000, 22(3): 77–80 (in Chinese with an English abstract)


[2]        
Liang X-Q(梁炫强), Pan R-Z(潘瑞炽), Bin J-H(宾金华). Factors related to preharvest resistance to Aspergillus infection in peanut. Chin Oil Crops Sci (中国油料作物学报), 2000, 22(4): 67–70 (in Chinese with an English abstract)


[3]        
Xiao D-R(肖达人), Wang S-Y(王圣玉), Qu Z(瞿桢). Progress on aflatoxin contamination of peanut. Peanut Sci Tech (花生科技), 1999, 28(suppl): 124–129 (in Chinese)


[4]        
Xiao D-R(肖达人), Wang S-Y(王圣玉), Zhang H-L(张洪玲). Rapid identifying method for resistance to aflatoxin production in peanut. Chin Oil Crops Sci (中国油料作物学报), 1999, 21(3): 72–76 (in Chinese with an English abstract)


[5]        
Mehan V K, McDonald D. Research on the aflatoxin problem in groundnut at ICRISAT. Plant Soil, 1984, 79: 255–260


[6]        
Mehan V K, McDonald D, Rasagopalan K. Resistance of peanut genotypes to seed infection by Aspergillus flavus in field trials in India. Peanut Sci, 1987, 14: 17–21


[7]        
Mehan V K, McDonald D, Haravu L J, Jayanthi S. The groundnut aflatoxin problem: Review and literature database. ICRISAT Press, 1991


[8]        
Jiang H-F(姜慧芳), Wang S-Y(王圣玉), Ren X-P(任小平). Reaction of groundnut germplasm to Aspergillus flavus invasion. Chin Oil Crops Sci (中国油料作物学报), 2002, 24: 23–25 (in Chinese with an English abstract)


[9]        
Jiang H-F(姜慧芳), Ren X-P(任小平), Wang S-Y(王圣玉). Evaluation for resistance to invasion and aflatoxin contamination caused by Aspergillus flavus in groundnut. Chin Oil Crops Sci (中国油料作物学报), 2005, 27(3): 21–25 (in Chinese with an English abstract)


[10]     
JiangH-F(姜慧芳), Ren X-P(任小平), Wang S-Y(王圣玉), Liao B-S(廖伯寿). Durability of resistance to Aspergillus flavus infection and effect of intact testa without injury on Aflatoxin production in peanut. Acta Agron Sin(作物学报), 2006, 32(6): 851–855 (in Chinese with an English abstract)


[11]     
Mixon A C. Peanut accessions resistance to seed infection by Aspergillus flavus. Agron J, 1973, 65: 560–562


[12]     
Mixon A C. Reducing Aspergillus species infection of peanut seed using resistant genotypes. J Environ Qual, 1986, 15: 101–103


[13]     
Holbrook C C, Anderson W F. Evaluation of a core collection to identify resistance to late leaf spot in peanut. Crop Sci, 1995, 35: 1700–1702


[14]     
Holbrook C C, Timper P, Xue H Q. Evaluation of the core collection approach for identifying resistance to Meloidogyne arenaria in peanut. Crop Sci, 2000, 40: 1172–1175


[15]     
Anderson W F, Holbrook C C, Culbreath A K. Screening the core collection for resistance to tomato spotted wilt virus. Peanut Sci, 1996, 23: 57–61


[16]     
Isleib T G, Beute M K, Rice P W, Hollowell J E. Screening the peanut core collection for resistance to Cylindrocladium black rot and early leaf spot. Proc Am Peanut Res Edu Soc, 1995, 27: 25


[17]     
Jiang H-F(姜慧芳), Ren X-P(任小平), Liao B-S(廖伯寿), Huang J-Q(黄家权), Lei Y(雷永), Chen B-Y(陈本银), Guo B Z, Holbrook C C, Upadhyaya H D. Peanut core collection established in china and compared with ICRISAT mini core collection. Acta Agron Sin(作物学报), 2008, 34(1): 25–30 (in Chinese with an English abstract)


[18]     
Jiang H-F(姜慧芳), duan N-X(段乃雄). Descriptors and data standard for peanut (Arachis spp.). Beijing: China Agriculture Press, 2006. pp 11–36 (in Chinese)


[19]     
Lei Y(雷永), Liao B-S(廖伯寿), Wang S-Y(王圣玉), Li D(李栋), Jiang H-F(姜慧芳). Identification of AFLP markers for resistance to seed infection by Aspergillus flavus in peanut (Arachis hypogaea L.). Acta Agron Sin(作物学报), 2005, 31: 1349–1353 (in Chinese with an English abstract)


[20]     
Mace E S, Phong D T. SSR analysis of cultivated groundnut (Arachis hypogaea L.) germplasm resistant to rust and late leaf spot diseases. Euphytica, 2006, 152: 317–330
[1] 赵婧, 孟凡钢, 于德彬, 邱强, 张鸣浩, 饶德民, 丛博韬, 张伟, 闫晓艳. 不同磷效率大豆农艺性状与磷/铁利用率对磷素的响应[J]. 作物学报, 2021, 47(9): 1824-1833.
[2] 邓妍, 王娟玲, 王创云, 赵丽, 张丽光, 郭虹霞, 郭红霞, 秦丽霞, 王美霞. 生物菌肥与无机肥配施对藜麦农艺性状、产量性状及品质的影响[J]. 作物学报, 2021, 47(7): 1383-1390.
[3] 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性[J]. 作物学报, 2020, 46(12): 1905-1913.
[4] 贾小平,全建章,王永芳,董志平,袁玺垒,张博,李剑峰. 不同光周期环境对谷子农艺性状的影响[J]. 作物学报, 2019, 45(7): 1119-1127.
[5] 徐益,张列梅,郭艳春,祁建民,张力岚,方平平,张立武. 黄麻核心种质的遴选[J]. 作物学报, 2019, 45(11): 1672-1681.
[6] 孙现军,姜奇彦,胡正,张惠媛,徐长兵,邸一桓,韩龙植,张辉. 水稻资源全生育期耐盐性鉴定筛选[J]. 作物学报, 2019, 45(11): 1656-1663.
[7] 翟俊鹏,李海霞,毕惠惠,周思远,罗肖艳,陈树林,程西永,许海霞. 普通小麦主要农艺性状的全基因组关联分析[J]. 作物学报, 2019, 45(10): 1488-1502.
[8] 徐益,张列梅,祁建民,苏梅,方书生,张力岚,方平平,张立武. 黄麻纤维产量与主要农艺性状的相关分析[J]. 作物学报, 2018, 44(6): 859-866.
[9] 江红,孙石,宋雯雯,吴存祥,武婷婷,胡水秀,韩天富. 不同地理来源MGIII组大豆品种生育期结构分析及E基因型鉴定[J]. 作物学报, 2018, 44(10): 1448-1458.
[10] 简大为, 周阳, 刘宏伟, 杨丽, 买春艳, 于立强, 韩新年, 张宏军, 李洪杰. 利用功能标记揭示新疆小麦改良品种与地方品种的遗传变异[J]. 作物学报, 2018, 44(05): 657-671.
[11] 郑立飞,尚一斐,李学军,冯浩,魏永胜. 结构方程模型在冬小麦农艺性状与产量关系分析中的应用[J]. 作物学报, 2017, 43(09): 1395-1400.
[12] 段绍光,金黎平*,李广存,卞春松,徐建飞,胡军,屈冬玉. 马铃薯品种遗传多样性分析[J]. 作物学报, 2017, 43(05): 718-729.
[13] 王鑫,马莹雪,杨阳,王丹峰,殷慧娟,王洪刚. 小麦矮秆种质SN224的鉴定及农艺性状QTL分析[J]. 作物学报, 2016, 42(08): 1134-1142.
[14] 司二静,张宇,汪军成,孟亚雄,李葆春,马小乐,尚勋武,王化俊. 大麦农艺性状与SSR标记的关联分析[J]. 作物学报, 2015, 41(07): 1064-1072.
[15] 罗巧玲,郑琪,许云峰,李立会,韩方普,许红星,李滨,马朋涛,安调过. 390份小麦-黑麦种质材料主要农艺性状分析及优异材料的GISH与FISH鉴定[J]. 作物学报, 2014, 40(08): 1331-1339.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!