欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (3): 435-441.doi: 10.3724/SP.J.1006.2010.00435

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

六个甘蓝型油菜油酸脱氢酶(FAD2)假基因的克隆和分析

肖钢1,2,张振乾1,邬贤梦1,谭太龙1,2,官春云1,*   

  1. 1湖南农业大学油料作物研究所/国家油料作物改良中心湖南分中心,2作物种质创新与资源利用国家重点实验室培育基地,湖南长沙410128
  • 收稿日期:2009-06-30 修回日期:2009-12-08 出版日期:2010-03-12 网络出版日期:2010-01-22
  • 通讯作者: 官春云,E-mail:guancy2000@yahoo.com.cn
  • 作者简介:肖钢,E-mail: sanjian123@yeah.net; Tel: 0731-4617941
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2006CB101600)资助。

Cloning and Characterization of Six Oleic Acid Desaturase Pseudogenes of Brassica napus

XIAO Gang1,2,ZHANG Zhen-Qian1,WU Xian-Meng1,TAN Tai-Long1,2,GUAN Chun-Yun1*   

  1. 1 Oil Crops Institute/National Oil Crops Improvement Center, Hunau Agricultural University; 2 Pre-State Key Laboratory for Germplasm Innovation and Resource Utilization of Crops, Changsha 410128, China
  • Received:2009-06-30 Revised:2009-12-08 Published:2010-03-12 Published online:2010-01-22
  • Contact: GUAN Chun-Yun,E-mail:guancy2000@yahoo.com.cn
  • About author:XIAO Gang,E-mail: sanjian123@yeah.net; Tel: 0731-4617941

摘要:

以甘蓝型油菜湘油15为材料,采用PCR方法克隆并分析了56FAD2基因克隆和47FAD2基因cDNA克隆,从中发现6个新的FAD2基因拷贝。它们与公布的甘蓝型油菜FAD2基因(AY577313)具有87%以上的同源性,没有内含子,在开放阅读框中存在1~12个终止密码子,其中有2个拷贝具有转录功能。将这6FAD2基因拷贝在酿酒酵母中进行体内表达实验,通过气相色谱检测脂肪酸组成证明其不具备油酸脱氢酶功能,与对照相比,也没有改变酵母体内脂肪酸组成。由此推测这6FAD2基因拷贝为假基因。

关键词: 甘蓝型油菜, 油酸脱氢酶, FAD2, 基因表达, 酿酒酵母

Abstract:

The phenomenon of multi-copy genes is common in plants. Pseudogene is defined as an inactive gene, which can not synthesize functional proteins but share the similar DNA sequences with normal functional genes. In this study, 56 FAD2 DNA clones and 47 FAD2 seed cDNA clones of Brassica napus cv. Xiangyou 15 were investigated, and 6 new copies of FAD2 were detected, designated as FAD2P1-6 respectively. This sequence length of 6 copies ranged from 1 141–1 157 bp and there were no introns in their open reading frames (ORF). These 6 copies share 96.1% identity in nucleotides from one another, and share more than 87% nucleotides identity with AY577313. Deduced amino acid sequences revealed that 112 stop codons occurred in the coding region of six copies which will prevent them from coding for a functional protein. These six copies were investigated in vivo in Saccharomyces cerevisiae through being cloned into yeast expression vector pYES2.0, and the 16:2 and 18:2 fatty acids were determined by gas chromatographic analysis. The results revealed that the products of the six copies were not able to synthesize 16:2 and 18:2 fatty acids, suggesting that they are pseudogenes of FAD2. These multiple pseudogenes of FAD2 within the B. napus genome might result from the duplication of large chromosomal segments simultaneously following mutation. Because of the existence of multiple pseudogenes for FAD2 in B. napus genome, we should be careful in genetic research to identify true and false, to avoid wrong conclusions.

Key words: Brassica napus, FAD2, Oleic acid desaturase, Gene expression, Saccharomyces cerevisiae

[1] Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell, 1996, 6: 147-158

[2] Ohlrogge J, Jaworski J G. Regulation of fatty acid synthesis.Plant Mol Biol, 1997, 48: 109-136
[3] Nagahara U. Genome-analysis in Brassica with special reference to the experiments formation of B. napus and peculiar mode of fertilization. Jpn J Bot, 1935, 7: 389-452
[4] Scheffler J A, Sharpe A G, Schmidt H, Sperling P, Parkin I A P, Lühs W, Lydiate D J, Heinz E. Desaturase multigene families of Brassica napus arose through genome duplication.Theor Appl Genet, 1997, 94: 583-591

[5] Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290: 1151-1155

[6] Hirotsune S J, Yoshida N, Chen A, Garrett L, Sugiyama F, Takahashi S, Yagami K, Wynshaw-Boris A, Yoshiki A. An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. Nature, 2003, 423: 91-96

[7] Frank A C, Amiri H, Andersson S G. Genome deterioration: Loss of repeated sequences and accumulation of junk DNA. Genetica, 2002 115(1): 1-12

[8] Wang G-L(王关林), Fang H-J(方宏筠). Plant Gene Engineering, 2nd edn (植物基因工程·第二版). Beijing: China Science Press, 2002. pp 744-745 (in Chinese)

[9] Wei D S, Li M C, Zhang X X, Ren Y, Xing L J. Identification and characterization of a novel Δ12-fatty acid desaturase gene from Rhizopus arrhizus. FEBS Lett, 2004, 573: 45-50
[10] Romanos M A, Scorer C A, Clare J J. Foreign gene expression in yeast: A review. YEAST, 1992, 8: 423-488

[11] Niu B, Ye H X, Xu Y, Wang S H, Chen P, Peng S M, Ou Y C,Tang L,Chen F. Cloning and characterization of a novel Δ12-fatty acid desaturase gene from the tree Sapium sebiferum.Biotechnol Lett, 2007, 29: 959-964

[12] Guan C-Y(官春云). Advance of high oleic acid in oil seed breeding. Crop Res (作物研究), 2006, 20(1): 1-8 (in Chinese)

[13] Jacq C, Miller J R, Brownlee G G. A pseudogene structure in 5S DNA of Xenopus laevis. Cell, 1977, 13: 109-120

[14] Zhang Z L, Harrison P M, Liu Y, Gerstein M. Millions of years of evolution preserved: A comprehensive catalog of the processed pseudogenes in the human genome.Genome Res,2003,13: 2541-2558

[15] Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes. Science, 2000, 290: 1151-1155
[16] Balakirev E S, Ayala F J. Pseudogenes: Are they “junk” or “functional” DNA.
Annu Rev Genet, 2003, 37: 123-151
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[5] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[6] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[7] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[8] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[11] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[12] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[13] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[14] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[15] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!