欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (2): 303-312.doi: 10.3724/SP.J.1006.2010.00303

• 耕作栽培·生理生化 • 上一篇    下一篇

根际增氧模式的水稻形态、生理及产量响应特征

赵锋1,2,王丹英1,徐春梅1,张卫建2,李凤博1,毛海军3,章秀福1,*   

  1. 1 中国水稻研究所 / 国家水稻生物学重点实验室,浙江杭州310006;2 南京农业大学应用生态研究所,江苏南京210059;3 江西农业大学,江西南昌330045
  • 收稿日期:2009-08-31 修回日期:2009-09-06 出版日期:2010-02-10 网络出版日期:2009-12-21
  • 通讯作者: 章秀福, E-mail: zhangxf169@sohu.com; Tel: 0571-63370584
  • 基金资助:
    本研究由国家自然科学基金项目(30571102)资助。

Response of Morphological, Physiological and Yield Characteristics of Rice (Oryza sativa L.) to Different Oxygen-Increasing Patterns in Rhizosphere

ZHAO Feng1,2,WANG Dan-Ying1,XU Chun-Mei1,ZHAGN Wei-Jian2,LI Feng-Bo1,MAO Hai-Jun3,ZHANG Xiu-Fu1,*
  

  1. 1 State Key Laboratory of Rice Biology / China National Rice Research Institute, Hangzhou 310006, China; 2 Institute of Applied Ecology, Nanjing Agricultural University, Nanjing 210095, China; 3 Jiangxi Agricultural University, Nanchang 330045, China
  • Received:2009-08-31 Revised:2009-09-06 Published:2010-02-10 Published online:2009-12-21
  • Contact: ZHANG Xiu-Fu,E-mail:zhangxf169@sohu.com;Tel:0571-63370584

摘要:

地表积水是导致水稻地下部分(根系)缺氧胁迫的主要原因。根际缺氧时,提高水稻根系通气(增加孔隙度)可能会减少营养物质的吸收面积,因此,根系必需在形态和代谢上进行一定的调节,而这种调节又会影响作物生长和根际状况。控制灌水(增加土壤和空气的接触时间)是目前常见的一种根际增氧途径,而化学物质增氧模式还处于试验阶段。为考察不同增氧模式对水稻根际缺氧调控的田间应用效果,本研究分别于2007年和2008年,采用过氧化尿素(T1)、过氧化钙(T2)以及干湿交替灌溉(T3)的根际增氧模式并以长期淹水田块为对照(CK),监测水稻根系及地上部分形态、生理、光合物质积累及产量形成特征。结果表明,与CK比较,处理T1T2T3对国稻1号和秀水09的增产幅度2007年分别为3.1%/11.5%10.2%/14.9%18.9%/16.4%2008年分别为11.56%/6.57%8.48%/9.20%13.56%/9.39%。使根际增氧的响应大致表现为根系孔隙度下降、齐穗期根体积增大、根系活力提高;前期分蘖数增加较快,有效穗多;叶片叶绿素含量在齐穗后下降较慢,剑叶SODPOD含量较高,MDA含量较低;齐穗后叶片光合作用对穗部干物质积累贡献大。不同增氧模式对水稻生长的影响虽然存在一定的差异,但对土壤淹水导致的根际缺氧胁迫,均起到一定的缓解作用。

关键词: 水稻, 根际, 增氧模式, 根系, 形态, 生理, 产量

Abstract:

A major constraint resulting from excess water on the surface of the ground for rice is anoxic stress to root system. Characteristics of roots allowing internal aeration may conflict with those for water or nutrient acquisition, thereby, morphological and physiological adjustments are inevitable, and possibly affect plant growth and the rhizosphere conditions. So far, alternate dry/wet irrigation, which can keep sufficient commutative space of gas between air and soil during rice growth period duration, is the main method to alleviate anoxic stress in rice rhizosphere for field cultivation. Besides, other oxygen-increasing patterns, such as aeration by peroxide application, are still at experimental stage. In order to monitor morphological and physiological responses, as well as yield characteristics of rice to the three oxygen-increasing patterns in rhizosphere, two-year field trials (2007-2008) were performed. Three oxygen-increasing patterns were adopted: application of urea peroxide (T1), application of calcium peroxide (T2), and alternate dry/wet irrigation (T3). Continuous submerging condition (no oxygen increased in rhizosphere) was taken as control (CK). The results showed that compared with the control (CK), the yield of Guodao 1 (indica) and Xiushui 09 (Japonica) under the treatments of T1, T2, and T3 were increased by 3.1% and 11.5%, 10.2% and 14.9%, and 18.9% and 16.4% in 2007, respectively; and by 11.56% and 6.57%, 8.48% and 9.20%, and 13.56% and 9.39% in 2008, respectively. In addition, the main effects of oxygen-increasing patterns on rice growth were as follows: (1) Porosity of root system was decreased, but the root volume and the activity of root system were increased. (2) Panicle number was increased due to the rapid development of tillers during tillering stage. (3) Chlorophyll content of leaves decreased more slowly after heading stage, but SOD and POD activities were higher, and MDA concentration was lower in leaves at harvest, so dry matter in panicle after heading that derived from leaf photosynthesis was much more than that accumulated in stem and sheath before heading. The three oxygen-increasing patterns had different effects on rice growth, but under hypoxic stress caused by the inadequate supply of oxygen under the submerged soil, oxygen-increasing patterns all could effectively alleviate the stress for root system and above-ground part of plant.

Key words: Rice, Rhizosphere, Oxygen-increasing patterns, Root system, Morphological, Physiological, Yield


[1] Wang J-Y(王镜岩), Zhu S-G(朱圣庚), Xu C-F(徐长法). Biochemistry (生物化学). Beijing: Higher Education Press, 2002. pp 129-144 (in Chinese)

[2] Vartapetian B B. Plant anaerobic stress as a novel trend in ecological physiology, biochemistry and molecular biology: 2. Further development of the problem. Russian J Plant Physiol, 2007, 53: 711-738

[3] Delaune R D, Pezeshki S R, Pardue J H. Anoxidation-reduction buffer for evaluating physiological response of plants to root oxygen stress. Environ Exp Bot,2005, 30: 243-247

[4] Pan S Z. Characterization of gleyization of paddy soils in the middle reaches of the Yangtze River. Pedosphere, 1996, 6: 111-119

[5] Sarkar R K, Reddy J N, Sharma S G, Ismail A M. Physiological basis of submergence tolerance in rice and implications for crop improvement. Curr Sci, 2006, 91: 899-906

[6] Pezeshki S R, Delaune R D. Responses of Spartina alterniflora and Spartina patens to rhizosphere oxygen deficiency. Acta Oecologica, 1996, 17: 365-378

[7] Colmer T D. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann Bot, 2003, 91: 301-309

[8] Angenlida M, Gerd A. Tolerance of crop plants to oxygen deficiency stress: fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiol Plant, 2003, 117: 508-520

[9] Ella E S, Kawano N, Osamu H. Importance of active oxygen scavenging system in the recovery of rice seedlings after submergence. Plant Sci, 2003, 65: 85-93

[10] Das K K, Sawano N, Ismail A M. Elongation ability and non-structural carbohydrate levels in relation to submergence tolerance in rice. Plant Sci, 2005, 68: 131-136

[11] Xu K, Xu X, Ronald P C. A high-resolution linkage map of the vicinity of the rice submergence tolerance locus Sub1. Mol Gen Genet, 2000, 263: 681-689

[12] Nakazomo M, Tsuji H, Li Y. Expression of a gene encoding mitochondria aldehyde dehydrogenises in rice increase under submerged conditions. Plant Physiol, 2000, 16: 45-51

[13] Zhang Y-P(张玉屏), Zhu D-F(朱德峰), Lin X-Q(林贤青), Chen H-Z(陈惠哲), Li H(李华), Yang Y-P(杨艳萍). Effects of dry and wet irrigation on the growth of rice under system of rice intensification. Agricultural Research in the Arid Areas (干旱地区农业研究), 2007, 25(5): 109-113 (in Chinese with English abstract)

[14] Zhang X-F(章秀福), Wang D-Y(王丹英), Qu Y-Y(屈衍艳), Li H(李华). Morphological and physiological characteristics of raised bed-cultivated rice. Acta Agron Sin (作物学报), 2005, 19(3): 742-748 (in Chinese with English abstract)

[15] Zhang X-F(章秀福), Wang D-Y(王丹英), Shao G-S(邵国胜). Effects of rice ridge cultivation on grain yield and quality and its physiological and ecological mechanisms. Chin J Rice Sci (中国水稻科学), 2003, 17(4): 343-348 (in Chinese with English abstract)

[16] Frankenberger W T, Factors J. Affecting the fate of urea peroxide added to soil. Bull Environ Contam Toxicol, 1997, 59: 50-57

[17] Motoyuki H, Mitsuo I. Promotion of seedling emergence of paddy rice from flooded soil by coating seed with potassium nitrate. Jpn J Crop Sci, 1991, 60: 441-446

[18] Yang L(杨利), Yao Q-H(姚其华), Fan X-P(范先鹏), Zhao S-J(赵书军), Long C-F(龙成风). Effect of applying CaO2 to cold-water paddy field in hilly area in brown-red soil of southeast Hubei. Hubei Agric Sci (湖北农业科学), 1997, (4): 37-39 (in Chinese with English abstract)

[19] Wang D-Y(王丹英), Han B(韩勃), Zhang X-F(章秀福). Effect of oxygen content in rice rhizosphere on growth of the roots. Acta Agron Sin (作物学报), 2008, 34(5): 803-808 (in Chinese with English abstract)

[20] Zhao S-J(赵世杰), Shi G-A(史国安), Dong X-C(董新纯). Laboratory Guide for Plant Physiology (植物生理学实验指导). Beijing: China Agricultural Science and Technology Press, 2002 (in Chinese)

[21] Qiao F-L(乔富廉). Techniques of Analysis and Measurements for Plant Physiological Experiment (植物生理学实验分析测定技术). Beijing: China Agricultural Science and Technology Press, 2002 (in Chinese)

[22] Zhao B-H(赵步洪), Xi L-L(奚岭林), Yang J-C(杨建昌). Study on the characteristics of carbohydrate transfer of stem and sheath and grain-filling in two-line hybrid rice. J Northwest Sci-Tech Univ Agric & For (Nat Sci Edn) (西北农林科技大学学报·自然科学版), 2004, 32(10): 9-14 (in Chinese with English abstract)

[23] Reggiani R. A role for ethylene in low-oxygen signaling in rice roots. Amino Acids, 2006, 30: 299-301

[24] Arunothai J, Hans B. Oxygen stress in Salvinia natans: Interactive effects of oxygen availability and nitrogen source. Environ Exp Bot, 2009, 66: 153-159

[25] Wang D-S(王东升), Zhang Y-L(张亚丽), Chen S(陈石), Duan Y-H(段英华), Shen Q-R(沈其荣). Response of root growth of rice genotypes with different N use efficiency to enhanced nitrate nutrition. Plant Nutr Fert Sci (植物营养与肥料学报), 2007, 13(4): 585-590 (in Chinese with English abstract)

[26] Colmer T D. Long-distance transport of gases in plants: A perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ, 2003, 26: 17-36

[27] Kirk G J. Plant-mediated processes to acquire nutrients: nitrogen uptake by rice plants. Plant Soil, 2001, 232: 129-134

[28] Maria S, Kapuganti J G, Robert D H. Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta, 2007, 226: 465-474

[29] Gao H-B(高洪波), Guo S-R(郭世荣), Wang T(汪天). Effect of root-zone hypoxia on NO3--N, NH4+-N and protein contents of muskmelon seedlings. Acta Hortic Sin (园艺学报), 2004, 31(2): 236-238 (in Chinese with English abstract)

[30] Insalud N, Bellr W, Colmer T D, Rerkasem B. Morphological and physiological responses of rice (Oryza sativa) to limited phosphorus supply in aerated and stagnant solution culture. Ann Bot, 2006, 98: 995-1004

[31] Groot T T, Bodegom P M, Meijer H A, Harren F J. Gas transport through the root-shoot transition zone of rice tillers. Plant Soil, 2005, 277: 107-116

[32]Xiang W-S(向万胜), Zhou W-J(周卫军), Gu H-H(古汉虎). Effects of oxygen-releasing peroxides such as CaO2 on soil redox status and rice growth. Acta Pedol Sin (土壤学报), 1995, 33(2): 220-224 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[6] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[7] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[8] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[9] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[10] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[11] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[12] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[13] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[14] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[15] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!