作物学报 ›› 2010, Vol. 36 ›› Issue (2): 303-312.doi: 10.3724/SP.J.1006.2010.00303
赵锋1,2,王丹英1,徐春梅1,张卫建2,李凤博1,毛海军3,章秀福1,*
摘要:
地表积水是导致水稻地下部分(根系)缺氧胁迫的主要原因。根际缺氧时,提高水稻根系通气(增加孔隙度)可能会减少营养物质的吸收面积,因此,根系必需在形态和代谢上进行一定的调节,而这种调节又会影响作物生长和根际状况。控制灌水(增加土壤和空气的接触时间)是目前常见的一种根际增氧途径,而化学物质增氧模式还处于试验阶段。为考察不同增氧模式对水稻根际缺氧调控的田间应用效果,本研究分别于2007年和2008年,采用过氧化尿素(T1)、过氧化钙(T2)以及干湿交替灌溉(T3)的根际增氧模式并以长期淹水田块为对照(CK),监测水稻根系及地上部分形态、生理、光合物质积累及产量形成特征。结果表明,与CK比较,处理T1、T2和T3对国稻1号和秀水09的增产幅度2007年分别为3.1%/11.5%、10.2%/14.9%和18.9%/16.4%;2008年分别为11.56%/6.57%、8.48%/9.20%和13.56%/9.39%。使根际增氧的响应大致表现为根系孔隙度下降、齐穗期根体积增大、根系活力提高;前期分蘖数增加较快,有效穗多;叶片叶绿素含量在齐穗后下降较慢,剑叶SOD和POD含量较高,MDA含量较低;齐穗后叶片光合作用对穗部干物质积累贡献大。不同增氧模式对水稻生长的影响虽然存在一定的差异,但对土壤淹水导致的根际缺氧胁迫,均起到一定的缓解作用。
[1] Wang J-Y(王镜岩), Zhu S-G(朱圣庚), Xu C-F(徐长法). Biochemistry (生物化学). Beijing: Higher Education Press, 2002. pp 129-144 (in Chinese) [2] Vartapetian B B. Plant anaerobic stress as a novel trend in ecological physiology, biochemistry and molecular biology: 2. Further development of the problem. Russian J Plant Physiol, 2007, 53: 711-738 [3] Delaune R D, Pezeshki S R, Pardue J H. Anoxidation-reduction buffer for evaluating physiological response of plants to root oxygen stress. Environ Exp Bot,2005, 30: 243-247 [4] Pan S Z. Characterization of gleyization of paddy soils in the middle reaches of the Yangtze River. Pedosphere, 1996, 6: 111-119 [5] Sarkar R K, Reddy J N, Sharma S G, Ismail A M. Physiological basis of submergence tolerance in rice and implications for crop improvement. Curr Sci, 2006, 91: 899-906 [6] Pezeshki S R, Delaune R D. Responses of Spartina alterniflora and Spartina patens to rhizosphere oxygen deficiency. Acta Oecologica, 1996, 17: 365-378 [7] Colmer T D. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann Bot, 2003, 91: 301-309 [8] Angenlida M, Gerd A. Tolerance of crop plants to oxygen deficiency stress: fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiol Plant, 2003, 117: 508-520 [9] Ella E S, Kawano N, Osamu H. Importance of active oxygen scavenging system in the recovery of rice seedlings after submergence. Plant Sci, 2003, 65: 85-93 [10] Das K K, Sawano N, Ismail A M. Elongation ability and non-structural carbohydrate levels in relation to submergence tolerance in rice. Plant Sci, 2005, 68: 131-136 [11] Xu K, Xu X, Ronald P C. A high-resolution linkage map of the vicinity of the rice submergence tolerance locus Sub1. Mol Gen Genet, 2000, 263: 681-689 [12] Nakazomo M, Tsuji H, Li Y. Expression of a gene encoding mitochondria aldehyde dehydrogenises in rice increase under submerged conditions. Plant Physiol, 2000, 16: 45-51 [13] Zhang Y-P(张玉屏), Zhu D-F(朱德峰), Lin X-Q(林贤青), Chen H-Z(陈惠哲), Li H(李华), Yang Y-P(杨艳萍). Effects of dry and wet irrigation on the growth of rice under system of rice intensification. Agricultural Research in the Arid Areas (干旱地区农业研究), 2007, 25(5): 109-113 (in Chinese with English abstract) [14] Zhang X-F(章秀福), Wang D-Y(王丹英), Qu Y-Y(屈衍艳), Li H(李华). Morphological and physiological characteristics of raised bed-cultivated rice. Acta Agron Sin (作物学报), 2005, 19(3): 742-748 (in Chinese with English abstract) [15] Zhang X-F(章秀福), Wang D-Y(王丹英), Shao G-S(邵国胜). Effects of rice ridge cultivation on grain yield and quality and its physiological and ecological mechanisms. Chin J Rice Sci (中国水稻科学), 2003, 17(4): 343-348 (in Chinese with English abstract) [16] Frankenberger W T, Factors J. Affecting the fate of urea peroxide added to soil. Bull Environ Contam Toxicol, 1997, 59: 50-57 [17] Motoyuki H, Mitsuo I. Promotion of seedling emergence of paddy rice from flooded soil by coating seed with potassium nitrate. Jpn J Crop Sci, 1991, 60: 441-446 [18] Yang L(杨利), Yao Q-H(姚其华), Fan X-P(范先鹏), Zhao S-J(赵书军), Long C-F(龙成风). Effect of applying CaO2 to cold-water paddy field in hilly area in brown-red soil of southeast Hubei. Hubei Agric Sci (湖北农业科学), 1997, (4): 37-39 (in Chinese with English abstract) [19] Wang D-Y(王丹英), Han B(韩勃), Zhang X-F(章秀福). Effect of oxygen content in rice rhizosphere on growth of the roots. Acta Agron Sin (作物学报), 2008, 34(5): 803-808 (in Chinese with English abstract) [20] Zhao S-J(赵世杰), Shi G-A(史国安), Dong X-C(董新纯). Laboratory Guide for Plant Physiology (植物生理学实验指导). Beijing: China Agricultural Science and Technology Press, 2002 (in Chinese) [21] Qiao F-L(乔富廉). Techniques of Analysis and Measurements for Plant Physiological Experiment (植物生理学实验分析测定技术). Beijing: China Agricultural Science and Technology Press, 2002 (in Chinese) [22] Zhao B-H(赵步洪), Xi L-L(奚岭林), Yang J-C(杨建昌). Study on the characteristics of carbohydrate transfer of stem and sheath and grain-filling in two-line hybrid rice. J Northwest Sci-Tech Univ Agric & For (Nat Sci Edn) (西北农林科技大学学报·自然科学版), 2004, 32(10): 9-14 (in Chinese with English abstract) [23] Reggiani R. A role for ethylene in low-oxygen signaling in rice roots. Amino Acids, 2006, 30: 299-301 [24] Arunothai J, Hans B. Oxygen stress in Salvinia natans: Interactive effects of oxygen availability and nitrogen source. Environ Exp Bot, 2009, 66: 153-159 [25] Wang D-S(王东升), Zhang Y-L(张亚丽), Chen S(陈石), Duan Y-H(段英华), Shen Q-R(沈其荣). Response of root growth of rice genotypes with different N use efficiency to enhanced nitrate nutrition. Plant Nutr Fert Sci (植物营养与肥料学报), 2007, 13(4): 585-590 (in Chinese with English abstract) [26] Colmer T D. Long-distance transport of gases in plants: A perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ, 2003, 26: 17-36 [27] Kirk G J. Plant-mediated processes to acquire nutrients: nitrogen uptake by rice plants. Plant Soil, 2001, 232: 129-134 [28] Maria S, Kapuganti J G, Robert D H. Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta, 2007, 226: 465-474 [29] Gao H-B(高洪波), Guo S-R(郭世荣), Wang T(汪天). Effect of root-zone hypoxia on NO3--N, NH4+-N and protein contents of muskmelon seedlings. Acta Hortic Sin (园艺学报), 2004, 31(2): 236-238 (in Chinese with English abstract) [30] Insalud N, Bellr W, Colmer T D, Rerkasem B. Morphological and physiological responses of rice (Oryza sativa) to limited phosphorus supply in aerated and stagnant solution culture. Ann Bot, 2006, 98: 995-1004 [31] Groot T T, Bodegom P M, Meijer H A, Harren F J. Gas transport through the root-shoot transition zone of rice tillers. Plant Soil, 2005, 277: 107-116 [32]Xiang W-S(向万胜), Zhou W-J(周卫军), Gu H-H(古汉虎). Effects of oxygen-releasing peroxides such as CaO2 on soil redox status and rice growth. Acta Pedol Sin (土壤学报), 1995, 33(2): 220-224 (in Chinese with English abstract) |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[6] | 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462. |
[7] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[8] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[9] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[10] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[11] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[12] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[13] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[14] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[15] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
|