欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (4): 580-589.doi: 10.3724/SP.J.1006.2010.00580

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

普通小麦及近缘粗山羊草α-醇溶蛋白基因的克降、定位与进化分析

朱西平,李鑫,李雅轩*,晏月明*   

  1. 首都师范大学生命科学学院,北京100048
  • 收稿日期:2009-10-19 修回日期:2010-01-02 出版日期:2010-04-12 网络出版日期:2010-03-03
  • 通讯作者: 李雅轩, E-mail: lyx1006@sohu.com; 晏月明, E-mail: yanym@hotmail.com
  • 基金资助:
    本研究由国家自然科学基金重点项目(30830072)和国家重点基础研究计划(973计划)项目(2009CB118303)资助。

Cloning, Chromosomal Location, and Evolutionary Analysis of α-gliadin Genes from Aegilops tauschii and Common Wheat (Triticum aestivum L.)

ZHU Xi-Ping,LI Xin,LI Ya-Xuan*,YAN Yue-Ming*   

  1. College of Life Science, Capital Normal University,Beijing 100048,China
  • Received:2009-10-19 Revised:2010-01-02 Published:2010-04-12 Published online:2010-03-03
  • Contact: LI Ya-Xuan,E-mail:lyx1006@sohu.com;YAN Yue-Ming,E-mail:yanym@hotmail.com

摘要:

通过特异PCR引物设计,从普通小麦品种(豫麦34和烟农19)和粗山羊草(T9、T197、T48、T176和T17)中扩增、克隆了7个新的α-醇溶蛋白基因,分别命名为Gli-YM34Gli-YN19、Gli-T9Gli-T197Gli-T48Gli-T176Gli-T17,基因序列长度为846~891 bp,编码282~297个氨基酸残基,都具有α-醇溶蛋白的典型结构特点。其中Gli-YM34Gli-YN19基因推导的醇溶蛋白都含有一个额外的半胱氨酸残基,可能对面筋品质有正向作用。根据α-醇溶蛋白氨基酸序列所具有的4种T细胞抗原表位和多聚谷氨酰胺重复区的平均长度以及中国春缺体四体分析,将来自普通小麦品种的Gli-YM34Gli-YN19基因定位在6D染色体上的Gli-D2位点,而且Gli-YM34Gli-YN19与来自粗山羊草的α-醇溶蛋白基因具有很高的序列相似性,进一步证明粗山羊草是普通小麦D基因组的供体。在克隆的4个典型α-醇溶蛋白基因中检测到21个SNP和1个9 bp的缺失。系统进化分析表明,α-醇溶蛋白基因与低分子量谷蛋白亚基基因关系较近,在大约43.69百万年时分化,与ω-醇溶蛋白和HMW-GS基因亲缘关系较远,它们的分化时间大约为79.39百万年。

关键词: α-醇溶蛋白, 普通小麦, 粗山羊草, SNP, 系统进化

Abstract:

Seven novel α-gliadin genes from common wheat cultivars (Yumai 34 and Yannong 19) andAegilops tauschii accessions (T9, T197, T48, T176, and T17) were amplified and cloned by using a PCR-based strategy. They were designated as Gli-YM34, Gli-YN19, Gli-T9, Gli-T197, Gli-T48, Gli-T176, and Gli-T17, respectively. Their length of the open reading frame (ORF) ranged from 846 to 891 bp, encoding the putative proteins of 282–297 amino acid residues. Comparative analysis showed that all genes isolated had typical structural characters of α-gliadin genes reported previously. Particularly, Gli-YM34 and Gli-YN19 α-gliadins from common wheat possessed an additional cysteine residue, suggesting a possible positive effect on dough quality. Both genes were assigned to Gli-D2 locus on the chromosome 6D by the analysis of four celiac disease toxic epitopes and glutamine residues in the polyglutamine domain as well as nullisomic-tetrasomic lines of Chinese Spring. A total of twenty-one single nucleotide polymorphisms (SNPs) and a 9 bp deletion among the four typical α-gliadin genes were identified. Phylogenetic and evolutionary analysis revealed that the α-gliadin genes are closely related to LMW-GS genes and their divergence occurred 43.69 million year ago. Less homology was found between α-gliadin genes and HMW-GS and ω-gliadin genes, and they diverged about 79.39 million year.

Key words: α-gliadins, Common wheat, Aegilops tauschii, SNP (Single nucleotide polymorism), Phylogenetics and evolution

[1] Payne P I. Genetics of wheat storage proteins and the effect of allelic variation on bread mapping quality. Annu Rev Plant Physiol, 1987, 38: 141–153

[2] Metakovsky E V. Gliadin allele identification in common wheat: II. Catalogue of gliandin alleles in common wheat. J Genet Bread, 1991, 45: 325–344

[3] Harberd N P, Bartels D, Thompson R D. Analysis of the gliadin multigene loci in bread wheat using nullisomic trasomiclines. Mol Gen Genet, 1985, 198: 234–242

[4] Hao C-Y(郝春燕), Li J-G(李建国), Li Y-X(李雅轩), Yan Y-M(晏月明). Molecular cloning of genes coding for gliadins in wheat. J Capital Normal Univ (Nat Sci Edn)(首都师范大学学报·自然科学版), 2006, 27: 67–70 (in Chinese with English abstract)

[5] Weegels P L, Marseille J P, Bosveld P, Hamer R J. Large-scale separation of gliadins and their bread-making quality. J Cereal Sci, 1994, 20: 253–264

[6] Metakovsky E V, Annicchiarico P, Boggini G, Pogna N E. Relationship between gliadin alleles and dough strength in Italian wheat cultivars. J Cereal Sci, 1997, 25: 229–236

[7] Wang A L, Gao L Y, Li X H, Zhang Y Z, He Z H, Xia X C, Zhang Y, Yan Y M. Characterization of two 1D-encoded ω-gliadin subunits closely related to dough strength and pan bread-making quality in common wheat (Triticum aestivum L.). J Cereal Sci, 2008, 47: 528–535

[8] Yan Y M, Surlan-Momirovic G, Prodanovic S, Zoric Z, Liu G. Capillary zone electrophoresis analysis of gliadin proteins from Chinese and Yugoslav winter wheat cultivars. Euphytica, 1999, 105: 197–204

[9] Yan Y M, Hsam S L K, Yu J Z, Jiang Y, Zeller F J. Genetic polymorphisms at Gli-Dt gliadin loci in Aegilops tauschii as revealed by acid polyacrylamide gel and capillary electrophoresis. Plant Breed, 2003, 122: 120–124

[10] Metakovsky E V, Gomez M, Vazquez J F, Carrillo J M. High genetic diversity of Spanish common wheat as judged from gliadin alleles. Plant Breed, 2000, 119: 37–42

[11] Zhang X-Y(张学勇), Yang X-M(杨欣明), Dong Y-C(董玉琛). Genetic analysis of wheat germplasm by acid polyacrylamide gel electrophoresis of gliadins. Sci Agric Sin (中国农业科学), 1995, 28(4): 25–32 (in Chinese with English abstract)

[12] Yan Y, Zheng J, Xiao Y, Yu J, Hu Y, Cai M, Li Y, Hsam S L K, Zeller F J. Identification and molecular characterization of a novel y-type Glu-Dt1 glutenin gene of Aegilops tauschii. Theor Appl Genet, 2004, 108: 1349–1358

[13] Yan Y, Hsam S L K, Yu J Z, Jiang Y, Ohtsuka I, Zeller F J. HMW and LMW glutenin alleles among putative tetraploid and hexaploid European spelt wheat (Triticum spelta L.) progenitors. Theor Appl Genet, 2003, 107: 1321–1330

[14] Van Herpen T W J M, Goryunova S V, van der Schoot J, Mitreva M, Salentijn E, Vorst O, Schenk M F, van Veelen P A, Koning F, van Soest L J M, Vosman B, Bosch D, Hamer R J, Gilissen L J W J, Smulders M J M. Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics, 2006, 7: 1

[15] An X, Zhang Q, Yan Y, Li Q, Zhang Y, Wang A, Pei Y, Tian J, Wang H, Hsam S L K, Zeller F J. Cloning and molecular characterization of three novel LMW-i glutenin subunit genes from cultivated einkorn (Triticum monococcum L.). Theor Appl Genet, 2006, 113: 383–395

[16] Zhang Y Z, Li Q Y, Yan Y M, Zheng J G, An X L, Xiao Y H, Wang A L, Pei Y H, Wang H B, Hsam S L K, Zeller F J. Molecular characterization and phylogenetic analysis of a novel glutenin gene (Dy10.1t) from Aegilops tauschii. Genome, 2006, 49: 735–745

[17] Cornell H, Jand G, Wills-Johnson. Structure-activity relationships in coeliac-toxic gliadin peptides. Amino Acids, 2001, 21: 243–253

[18] Anderson O D, Litts J C, Greene F C. The α-gliadin gene family: II. DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theor Appl Genet, 1997, 95: 59–65

[19] Allaby R G, Banerjee M, Brown T A. Evolution of the high molecular weight glutenin loci of the A, B, D and G genomes of wheat. Genome, 1999, 42: 296–307

[20] DuPont F M, Vensel W, Encarnacao T, Chan R, Kasarda D D. Similarities of omega gliadins from Triticum urartu to those encoded on chromosome 1A of hexaploid wheat and evidence for their post-translational processing. Theor Appl Genet, 2004, 108: 1299–1308

[21] Gu Y Q, Crossman C, Kong X, Luo M, You F M, Coleman-Derr D, Dubcovsky J, Anderson O D. Genomic organization of the complex alpha-gliadin gene locus in wheat. Theor Appl Genet, 2004, 109: 648–657

[22] Thomas W, Okita S, Cheesbrough V, Reeves C D. Evolution and heterogeneity of the α-/β-type and γ-type gliadin DNA sequences. Biol Chem, 1985, 260: 8203–8213

[23] Anderson O D, Greene F C, Yip R E, Halford N G, Shewry P R, Malpica-Romero J M. Nucleotide sequences of the two high-molecular-weight glutenin genes from the D-genome of a hexaploid bread wheat, Triticum aestivum L. cv Cheyenne. Nucl Acids Res, 1989, 17: 461–462

[24] Anderson O D, Litts J C, Greene F C. The α-gliadin gene family: I. Characterization of ten new wheat α-gliadin genomic clones, evidence for limited sequence conservation of flanking DNA, and Southern analysis of the gene family. Theor Appl Genet, 1997, 95: 50–58

[25] Wahls W P, Wallace L J, Moore P D. Hypervariable minisatellite DNA is a hotspot for homologous recombination in human cells. Cell, 1990, 60: 95–103

[26] Ennings C. How trinucleotide repeats may function. Nature, 1995, 378: 127

[27] Pei Y H, Wang A L, An X L, Li X H, Zhang Y Z, Huang X Q, Yan Y M. Characterization and comparative analysis of three low molecular weight glutenin C-subunit genes isolated from Aegilops tauschii. Can J Plant Sci, 2007, 87: 273–280

[28] Zhang W, Gianibelli M C, Ma W, Rampling L, Gale K R. Identification of SNPs and development of allele: Specific PCR markers for γ-gliadin alleles in Triticum aestivum. Theor Appl Genet, 2003, 107: 130–138

[29] Zhang Y Z, Li X H, Wang A L, An X L, Zhang Q, Pei Y H, Gao L Y, Ma W J, Appels R, Yan Y M. Novel x-type HMW glutenin genes from Aegilops tauschii and their implications on the wheat origin and evolution mechanism of Glu-D1-1 proteins. Genetics, 2008, 178: 23–33

[30] Li X H, Ma W J, Gao L Y, Zhang Y Z, Wang A L, Ji K M, Wang K, Appels R, Yan Y M. A novel chimeric LMW-GS gene from the wild relatives of wheat Ae. kotschyi and Ae. juvenalis: evolution at the Glu-3 loci. Genetics, 2008, 180: 93–101

[31] Yan Y M, Hsam S L K, Yu J Z, Yi J, Zeller F J. Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by sodium dodecyl sulphate (SDS-PAGE), acid polyacrylamide Gel (A-PAGE) and capillary electrophoresis. Euphytica, 2003, 130: 377–385
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[3] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[4] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[5] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[6] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[7] 郑向华, 叶俊华, 程朝平, 魏兴华, 叶新福, 杨窑龙. 利用SNP标记进行水稻品种籼粳鉴定[J]. 作物学报, 2022, 48(2): 342-352.
[8] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[9] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[10] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[11] 王蕊, 施龙建, 田红丽, 易红梅, 杨扬, 葛建镕, 范亚明, 任洁, 王璐, 陆大雷, 赵久然, 王凤格. 玉米杂交种纯度鉴定SNP核心引物的确定及高通量检测方案的建立[J]. 作物学报, 2021, 47(4): 770-779.
[12] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[13] 谢磊, 任毅, 张新忠, 王继庆, 张志辉, 石书兵, 耿洪伟. 小麦穗发芽性状的全基因组关联分析[J]. 作物学报, 2021, 47(10): 1891-1902.
[14] 刘畅, 孟云, 刘金栋, 王雅美, Guoyou Ye. 结合QTL-seq和连锁分析发掘水稻中胚轴伸长相关QTL[J]. 作物学报, 2021, 47(10): 2036-2044.
[15] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!