欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (11): 1805-1819.doi: 10.3724/SP.J.1006.2010.01805

• 综述 •    下一篇

双标图分析在农作物品种多点试验中的应用

严威凯   

  1. Eastern Cereal and Oilseed Research Centre (ECORC), Agriculture and Agri-Food Canada (AAFC), Neatby Building, 960 Carling Ave., Ottawa, Ontario, Canada, K1A 0C6
  • 收稿日期:2010-03-29 修回日期:2010-08-09 出版日期:2010-11-12 网络出版日期:2010-08-30

Optimal Use of Biplots in Analysis of Multi-Location Variety Test Data

YAN Wei-Kai   

  1. Eastern Cereal and Oilseed Research Centre (ECORC), Agriculture and Agri-Food Canada (AAFC), Neatby Building, 960 Carling Ave., Ottawa, Ontario, Canada, K1A 0C6 
  • Received:2010-03-29 Revised:2010-08-09 Published:2010-11-12 Published online:2010-08-30

摘要: 双标图分析越来越多地被用于直观分析农作物品种多点试验数据和其他类型的两向数据。这种方法深受植物育种家和农业研究人员的推崇, 认为它可以提高研究者理解和驾驭试验数据的能力;但也受到一些学者的批评, 认为它是统计分析方面的旁门左道。事实上,学术界对什么是双标图的认识尚存混乱。一些双标图的使用者并不总能正确地选择和解释双标图。一些双标图的批评者对双标图分析及其研究对象也缺乏深入了解。为使研究者对双标图分析有一个客观全面的认识, 本文就用双标图分析农作物品种多点试验中的几个问题进行阐述:(1) 如何针对特定的研究目的选择适当的双标图; (2) 如何选择适当的GGE双标图来分析多点试验数据; (3) 如何使用GGE双标图的不同功能形态进行品种评价、试验点评价和品种生态区划分; (4) 如何判断双标图是否充分表现试验数据中的规律; (5) 如何检验双标图显示的结果是否显著。

关键词: 双标图, 品种-环境互作, 品种评价, 试验点评价, 品种生态区划分

Abstract: Biplot analysis has been increasingly used in visual analysis of genotype-by-environment data and other types of two-way data. While many plant breeders and agricultural researchers are enthusiastic about the capacity of biplot analysis in helping them to understand their research data, some statisticians consider the use of biplots as a sidetrack to genotype-by-environment interaction analyses. Confusion also exists among statisticians on what is or is not a biplot. Admittedly, some users of biplot analysis are not always clear on how to select a proper type of biplot for a particular research objective and how to interpret a biplot correctly, accurately, and adequately. Some criticisms of biplot analysis may arise from incomplete understanding of the practitioners’ research problems as well as of the biplot methodology. In this review, I summarize the experiences and understanding in biplot analysis of genotype-by-environment data achieved during the last decade and discuss the following issues: (1) how to choose a proper biplot; (2) how to choose a proper GGE (genotype + genotype-by-environment interaction) biplot; (3) how to use the key functions of a GGE biplot for genotype evaluation, test-environment evaluation, and mega-environment delineation; (4) how to judge the adequacy of a 2-D biplot; and (5) how to test the statistical significance of a biplot pattern.

Key words: Biplot, Genotype-by-environment interaction, Genotype evaluation, Test-environment evaluation, Mega-environment delineation

[1]Lin C S, Binns M R. Concepts and methods of analyzing regional trial data for cultivar and location selection, Plant Breed Rev, 1994, 12: 271-297
[2]Cooper M, DeLacy I H. Relationship among analytical methods used to study genotypic variation and genotype-by-environment interaction in plant breeding multi-environment experiments. Theor Appl Genet, 1994, 88: 561-572
[3]Gauch H G, Zobel R W. Identifying mega-environments and targeting genotypes. Crop Sci, 1997, 37: 311-326
[4]Yan W. GGEbiplot—a Windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agron J, 2001, 93: 1111-1118
[5]Yan W, Hunt L A. Biplot analysis of multi-environment trial data. In: Kang M S ed. Quantitative Genetics, Genomics, and Plant Breeding. CAB International, Wallingford, Oxon, UK. 2003. pp 289-303
[6]Yan W, Kang M S. GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists. Boca Raton, FL: CRC Press, 2003
[7]Yan W, Tinker N A. Biplot analysis of multi-environment trial data: Principles and applications. Can J Plant Sci, 2006, 86: 623-645
[8]Yan W, Kang M S, Ma B L, Woods S, Cornelius P L. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci, 2007, 47: 643-655
[9]Finlay K W, Wilkinson G N. The analysis of adaptation in a plant breeding programme. Aust J Agric Res, 1963, 14: 742-754
[10]Gauch H G Jr, Piepho H P, Annicchiarico P. Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Sci, 2008, 48: 866-889
[11]Gauch H G Jr. Statistical analysis of yield trials by AMMI and GGE. Crop Sci, 2006, 46: 1488-1500
[12]Gabriel K R. The biplot graphic display of matrices with application to principal component analysis. Biometrika 1971, 58: 453-467
[13]Bradu D, Gabriel K R. The biplot as a diagnostic tool for models of two-way tables. Technometrics, 1978, 20: 47-68
[14]Kempton R A. The use of biplots in interpreting variety by environment interactions. J Agric Sci, 1984, 103: 123-135
[15]Kroonenberg P M. Introduction to Biplots for GE Tables. Leiden University, 1995 (http://three-mode.leidenuniv.nl/document/biplot.pdf)
[16]DeLacy I H, Basford K E, Cooper M, Fox P N. Retrospective analysis of historical data from multi-environment trials—Theoretical development. In: Cooper M, Hammer G L eds. Plant Adaptation and Crop Improvement. Wallingford: CAB International/IRRI/ICRISAT, 1996. pp 243-267
[17]Zobel R W, Wright M J, Gauch H G Jr. Statistical analysis of a yield trial. Agron J, 1988, 80: 388-393
[18]Yan W, Hunt L A, Sheng Q-L, Szlavnics Z. Cultivar evaluation and mega-environment investigation based on GGE biplot. Crop Sci, 2000, 40: 596-605
[19]Wang L (王磊), McLaren C G, Yang S-H (杨仕华). Use of biplot in the analysis of G×E interactions. Sci-Tech Commun (科技通报), 1997, 13(5): 275-280 (in Chinese)
[20]Yan W-K(严威凯), Sheng Q-L(盛庆来), Hu Y-G(胡跃高), Hunt L A. GGE biplot—an ideal method for analyzing genotype by environment interaction patterns. Acta Agron Sin (作物学报), 2001, 27(1): 21-28 (in Chinese with English abstract)
[21]Yang R C, Crossa J, Cornelius P L, Burgueño J. Biplot analysis of genotype × environment interaction: Proceed with caution. Crop Sci, 2009, 49: 1564-1576
[22]Yan W. Singular value partitioning for biplot analysis of multi-environment trial data. Agron J, 2002, 94: 990-996
[23]Gauch H G Jr, Zobel R W. AMMI analysis of yield trials. In: Kang M S, Gauch H G, eds. Genotype-by-Environment Interaction. Boca Raton, FL: CRC Press, 1996. pp 85-122
[24]Yan W, Tinker N A. A biplot approach to the investigation of QTL-by-environment patterns. Mol Breed, 2005, 15: 31-43
[25]Vargas M, Crossa J, van Eeuwijk F A, Ramírez M E, Sayre K. Using partial least squares regression, factorial regression, and AMMI models for interpreting genotype x environment interaction. Crop Sci, 1999, 39: 955-967
[26]Chapman S, Schenk P, Kazan K, Manners J. Using biplots to interpret gene expression patterns in plants. Bioinformatics, 2002, 18: 202-204
[27]Yan W, Frégeau-Reid J A, Pageau D, Martin R, Mitchell-Fetch J, Etienne M, Rowsell J, Scott P, Price M, de Haan B, Cummiskey A, Lajeunesse J, Durand J, Sparry E. Identifying essential test locations for oat breeding in eastern Canada. Crop Sci, 2010, 50: 504-515 (http://crop.scijournals.org/ cgi/reprint/50/2/504)
[28]Yan W, Holland J B. A Heritability-adjusted GGE Biplot for test environment evaluation. Euphytica, 2010, 171:355-369 (http://www.springerlink. com/content/p816144m1574x358/fulltext.pdf )
[29]Smith A, Cullis, B R, Thompson R. Exploring variety-environment data using random effects AMMI models with adjustment for spatial field trends: Part 1: Theory. In: Kang M S ed. Quantitative Genetics, Genomics and Plant Breeding. Wallingford, Oxon, UK: CABI Publishing, 2003. pp 323-336
[30]Yan W, Tinker N A. An integrated system of biplot analysis for displaying, interpreting, and exploring genotype-by-environment interactions. Crop Sci, 2005, 45: 1004-1016
[31]Yan W, Rajcan I. Biplot Analysis of test sites and trait relations of soybean in Ontario. Crop Sci, 2002, 42: 11-20
[32]Casanoves F, Baldessari J, Balzarini M. Evaluation of multienvironment trials of peanut cultivars. Crop Sci, 2005, 45: 18-26
[33]Blanche S B, Myers G O. Identifying discriminating locations for cultivar selection in Louisiana. Crop Sci, 2006, 46: 946-949
[34]Lebart L. Which bootstrap for principal axes methods. In: Vrito P, Bertrand P, Cucumel G F, de Carvalho F eds. Selected Contributions in Data Analysis and Classification, Part VII. Berlin, Heidelberg: Springer, 2007. pp 581-588
[35]Yan W, Frégeau-Reid J A. Breeding line selection based on multiple traits. Crop Sci, 2008, 48: 417-423
[36]Allen F L, Comstock R E, Rasmusson D C. Optimal environments for yield testing. Crop Sci, 1978, 18: 747-751
[37]Falconer D S, Mackay T F C. Introduction to Quantitative Genetics, 4th edn. Harlow, Essex: Longman Scientific and Technical, 1996
[38]Gilmour A R, Cullis B R, Verbyla A P. Accounting for natural and extraneous variation in the analysis of field experiments. J Agric Biol Env Stat, 1997, 2: 269-293
[39]Kelly A M, Smith A B, Eccleston J A, Cullis B R. The Accuracy of varietal selection using Factor Analytic models for multi-environment plant breeding trials. Crop Sci, 2007, 47: 1063-1070
[40]Stefanova K T, Buirchell B. Multiplicative mixed models for genetic gain assessment in Lupin breeding. Crop Sci, 2010, 50: 880-891
[41]Pswarayi A, van Eeuwijk F A, Ceccarelli S, Grando S, Comadran J, Russell J R, Francia E, Pecchioni N, Li Destri O, Akar T, Al-Yassin A, Benbelkacem A, Choumane W, Karrou M, Ouabbou H, Bort J, Araus J L, Molina-Cano J L, Thomas W T B, Romagosa I. Barley adaptation and improvement in the Mediterranean basin. Plant Breed, 2008, 127: 554-560
[42]Yan W, Hunt L A. Biplot analysis of diallel data. Crop Sci, 2002, 42: 21-30
[43]Shang Y(尚毅), Li S-Q(李少钦), Li D-R(李殿荣). GGE biplot analysis of diallel cross of B. napus L. Acta Agron Sin (作物学报), 2006, 3(2): 243-248 (in Chinese with English abstract)
[44]Yan W, Falk D E. Biplot analysis of host-by-pathogen interaction. Plant Dis, 2002, 86: 1396-1401
[45]Chen S-L(陈四龙), Li Y-R(李玉荣), Cheng Z-S(程增书), Liu J-S(刘吉生). GGE biplot analysis of effects of planting density on growth and yield components of high oil peanut. Acta Agron Sin (作物学报), 2009, 35(7): 1328-1335 (in Chinese with English abstract)
[46]Ma B-L, Yan W, Dwyer L M, Frégeau-Reid J A, Voldeng H D, Dion Y, Nass H. Graphic analysis of genotype, environment, nitrogen fertilizer and their interactions on spring wheat yield. Agron J, 2004, 96: 169-180
[47]Yan W, Glover K D, Kang M S. Comment on “Biplot Analysis of Genotype × Environment Interaction: Proceed with Caution”. Crop Sci, 2010, 50: 1121-1123
[1] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[2] 叶夕苗,程鑫,安聪聪,袁剑龙,余斌,文国宏,李高峰,程李香,王玉萍,张峰. 马铃薯产量组分的基因型与环境互作及稳定性[J]. 作物学报, 2020, 46(3): 354-364.
[3] 任长宏,格桑曲珍,胡希远. 经验性最佳线性无偏预测(eBLUP)在油菜区域试验品种评价的效果[J]. 作物学报, 2017, 43(03): 371-377.
[4] 罗俊,许莉萍,邱军,张华,袁照年,邓祖湖,陈如凯,阙友雄. 基于HA-GGE双标图的甘蔗试验环境评价及品种生态区划分[J]. 作物学报, 2015, 41(02): 214-227.
[5] 许乃银,李健. 棉花区试中品种多性状选择的理想试验环境鉴别[J]. 作物学报, 2014, 40(11): 1936-1945.
[6] 许乃银,李健. 利用GGE双标图划分长江流域棉花纤维品质生态区[J]. 作物学报, 2014, 40(05): 891-898.
[7] 罗俊,张华,邓祖湖,许莉萍,徐良年,袁照年,阙友雄. 应用GGE双标图分析甘蔗品种(系)的产量和品质性状[J]. 作物学报, 2013, 39(01): 142-152.
[8] 许乃银,张国伟,李健,周治国. 基于HA-GGE双标图的长江流域棉花区域试验环境评价[J]. 作物学报, 2012, 38(12): 2229-2236.
[9] 刘章雄, 杨春燕, 徐冉, 卢为国, 乔勇, 张礼凤, 常汝镇, 邱丽娟. 大豆微核心种质在黄淮地区的区域适应性分析[J]. 作物学报, 2011, 37(03): 443-451.
[10] 张志芬,付晓峰*,刘俊青,杨海顺. 用GGE双标图分析燕麦区域试验品系产量稳定性及试点代表性[J]. 作物学报, 2010, 36(08): 1377-1385.
[11] 陈四龙,李玉荣,程增书,刘吉生. 用GGE双标图分析种植密度对高油花生生长和产量的影响[J]. 作物学报, 2009, 35(7): 1328-1335.
[12] 尚毅;李少钦;李殿荣;田建华. 用双标图分析油菜双列杂交试验[J]. 作物学报, 2006, 32(02): 243-248.
[13] 张勇;何中虎;张爱民. 应用GGE双标图分析我国春小麦的淀粉峰值粘度[J]. 作物学报, 2003, 29(02): 245-251.
[14] 严威凯;盛庆来;胡跃高;L A Hunt. GGE叠图法—分析品种×环境互作模式的理想方法[J]. 作物学报, 2001, 27(01): 21-28.
[15] 金文林;白琼岩. 作物区试中品种产量性状评价的秩次分析法[J]. 作物学报, 1999, 25(05): 632-638.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!