欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (02): 214-227.doi: 10.3724/SP.J.1006.2015.00214

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于HA-GGE双标图的甘蔗试验环境评价及品种生态区划分

罗俊1,许莉萍1,邱军2,张华1,袁照年1,邓祖湖1,陈如凯1,阙友雄1,*   

  1. 1福建农林大学 / 农业部福建甘蔗生物学与遗传育种重点实验室 / 国家甘蔗产业技术研发中心, 福建福州 350002; 2 全国农业技术推广服务中心, 北京 100125
  • 收稿日期:2014-04-02 修回日期:2014-12-19 出版日期:2015-02-12 网络出版日期:2014-12-29
  • 通讯作者: 阙友雄, E-mail: queyouxiong@126.com
  • 基金资助:

    本研究由国家现代农业(甘蔗)产业技术体系建设专项(CARS-20), 国家公益性行业(农业)科研专项(201003009-2)和国家农作物品种区域试验项目(农财发[2012]21号)资助。

Evaluation of Sugarcane Test Environments and Ecological Zone Division in China Based on HA-GGE Biplo

LUO Jun1,XU Li-Ping1,QIU Jun2,ZHANG Hua1,YUAN Zhao-Nian1,DENG Zu-Hu1,CHEN Ru-Kai1,QUE You-Xiong1,*   

  1. 1 Fujian Agriculture and Forestry University / Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture / Sugarcane Research & Development Center, China Agriculture Research System, Fuzhou 350002, China; 2 National Agricultural Technology Extension and Service Center, Beijing 100125, China
  • Received:2014-04-02 Revised:2014-12-19 Published:2015-02-12 Published online:2014-12-29
  • Contact: 阙友雄, E-mail: queyouxiong@126.com

摘要:

采用遗传力校正的GGE双标图(heritability adjusted GGE, HA-GGE), 分析基因型(G)、环境(E)、基因型与环境互作效应(GE)对产量变异的影响, 对14个试验点的分辨力、代表性和理想指数进行分析, 并对这些试验点的生态区进行划分。结果表明, 甘蔗试验环境对产量变异的影响大于基因型和基因型与环境互作; 互作因素中以环境×基因型的互作效应最大, 基因型×年份的互作效应最小。广东遂溪(E3)和广西崇左(E6)为最理想试验环境, 对筛选广适性新品种和鉴别理想品种的效率最高; 福建福州(E1)、福建漳州(E2)、广东湛江(E4)、云南保山(E11)、云南临沧(E13)、云南瑞丽(E14)为理想试验环境;广西百色(E5)、广西河池(E7)、海南临高(E10)、云南开远(E12)为较理想试验环境; 广西来宾(E8)、广西柳州(E9)为不太理想的试验环境。根据HA-GGE双标图分析结果, 可将我国甘蔗生态区划分为3个, 即以广西百色、河池、来宾和柳州为代表的华南内陆甘蔗品种生态区, 以云南保山、开远、临沧、瑞丽为代表的西南高原甘蔗品种生态区, 涵盖福建福州、漳州、广东湛江、遂溪、广西崇左等试点的华南沿海甘蔗品种生态区。

关键词: 甘蔗, 产量, 基因型×环境交互作用, HA-GGE双标图, 生态区划分

Abstract:

The yield data of 24 sugarcane cultivars grown at 14 test locations were analyzed by combining analysis of variance and heritability-adjusted GGE (HA-GGE) biplot to study the genotype (G), environment (E), and genotype×environment (GE) effects on yield variation. Besides, the 14 test locations were evaluated for their discriminating ability, representative ability and desirability index, and grouped into ecological zones based on the GGE biplot patterns. The results showed that the effect of environments on yield was higher than that of G and GE, and the genotype by location interaction was the greatest while genotype by year interaction the least within GE. The GGE biplot analysis revealed that Suixi of Guangdong Province and Chongzuo of Guangxi Province were the two most ideal test locations for developing and/or recommending cultivars for the whole region. In contrast, Laibin and Liuzhou of Guangxi Province were undesirable for selection and variety recommendation for the whole region. The other relatively desirable test locations included Fuzhou and Zhangzhou of Fujian Province, Zhanjiang of Guangdong Province, Baoshan, Lincang, and Ruili of Yunnan Province, followed by the four less desirable test environments, Baise and Hechi of Guangxi Province, Lingao of Hainan Province and Kaiyuan of Yunnan Province. According to the results from HA-GGE analysis, the sugarcane ecological zones in China could be divided into three subregions, the first is the ecological zone of southern China inland, represented by Baise, Hechi, Laibin and Liuzhou of Guangxi Province, the second one is the ecological zone of southwest plateau, represented by Baoshan, Kaiyuan, Lincang and Ruili of Yunnan Province, and the third one is the ecological zone of coastal southern China, represented by Fuzhou and Zhangzhou of Fujian Province, Zhanjiang and Suixi of Guangdong Province, and Chongzuo of Guangxi Province. The present study fully displayed the successful application of HA-GGE biplot in trial environment evaluation and also provided the theoretical basis for the decision-making in ecological zone division.

Key words: Sugarcane, Yield, Genotype×environment (GE) effects, Heritability adjusted GGE, Ecological zone division

[1]罗俊, 张华, 邓祖湖, 阙友雄. 用GGE双标图分析甘蔗品种性状稳定性及试点代表性. 应用生态学报, 2012, 23: 1319–1325

Luo J, Zhang H, Deng Z H, Que Y X. Trait stability and test site representativeness of sugarcane cultivars based on GGE-biplot analysis. Chin J Appl Ecol, 2012, 23: 1319–1325

[2]罗俊, 张华, 邓祖湖, 许莉萍, 徐良年, 袁照年, 阙友雄. 应用GGE双标图分析甘蔗品种(系)的产量和品质性状, 作物学报, 2013, 39: 142–152

Luo J, Zhang H, Deng Z H, Xu L P, Xu L N, Yuan Z N, Que Y X. Analysis of yield and quality traits in sugarcane cultivars (lines) with GGE-biplot. Acta Agon Sin, 2013 39: 142–152 (in Chinese with English abstract)

[3]Giauffret C, Lothrop J, Dorvillez D, Gouesnard B, Derieux M. Genotype × environment interactions in maize from temperate or high land tropical origin. Crop Sci, 2000, 40: 1004–1012

[4]Haussmann B I, Hess D E, Reddy B V, Mukuru S Z, Kayentao M, Welz H G, Geiger. Pattern analysis of genotype × environment interaction for striga resistance and grain yield in African sorghum trials. Genetic Res Crop Evol, 2001, 122: 297–308

[5]许乃银, 张国伟, 李健, 周治国. 基于GGE双标图的棉花品种生态区划分. 应用生态学报, 2013, 24: 771–776

Xu N Y, Zhang G W, Li J, Zhou Z G. Ecological regionalization of cotton varieties based on GGE biplot. Chin J Appl Ecol, 2013, 24: 771–776 (in Chinese with English abstract)

[6]Gauch H G, Zobel R W. AMMI analysis of yield trails. In: Kang M S, Gauch G H, eds. Genotype-by-Environment Interaction. Boca Raton Florida: CRC Press, 1996. pp 85–122

[7]Romagosa I, Fox P N. Genotype×environment interaction and adaptation. In: Hayward M D, Bosemark N O, Romagosa I, eds. Plant Breeding: Principle and Prospects. London: Chapman and Hall, 1993. pp 373–390

[8]Epinat-Le Signor C, Dousse S, Lorgeou J, Denis J B, Bonhomme R, Carolo P, Charcosset A. Interpretation of genotype × environment interactions for early maize hybrids over 12 years. Crop Sci, 2001, 41: 663–669

[9]Gauch H G, Zobel R W. Identifying mega-environments and targeting genotypes. Crop Sci, 1997, 37: 311–326

[10]许乃银, 张国伟, 李健, 周治国. 基于HA-GGE 双标图的长江流域棉花区域试验环境评价. 作物学报, 2012, 38: 2229–2236

Xu N Y, Zhang G W, Li J, Zhou Z G. Evaluation of cotton regional trial environments based on HA-GGE biplot in the Yangtze river valley. Acta Agon Sin, 2012, 38: 2229–2236 (in Chinese with English abstract)

[11]Yan W K, Hant L A. Biplot analysis of diallel data. Crop Sci, 2002, 42: 21–30

[12]严威凯. 双标图分析在农作物品种多点试验中的应用. 作物学报, 2010, 36: 1?16

Yan W K. Optimal use of biplots in the analysis of multi?environment variety trial data. Acta Agon Sin, 2010, 36: 1?16 (in Chinese with English abstract)

[13]de Oliveira R L, Von Pinho R G, Ferreira D F, Pires L P M, Melo W M C. Selection index in the study of adaptability and stability in maize. Sci World J, 2014, http://dx.doi.org/10.1155/2014/360570

[14]Yan W, Frégeau-Reid J A, Pageau D, Martin R, Mitchell-Fetch J, Etienne M, Rowsell J, Scott P, Price M, de Haan B, Cummiskey A, Lajeunesse J, Durand J, Sparry E. Identifying essential test locations for oat breeding in eastern Canada. Crop Sci, 2010, 50: 504?515

[15]Crossa J, Fox P N, Pfeiffer W H, Rajaram S, Gauch Jr H G. AMMI adjustment for statistical analysis of an internal wheat yield trial. Theor Appl Genet, 1991, 81: 27–37

[16]常磊, 柴守玺. AMMI模型在旱地春小麦稳定性分析中的应用. 生态学报, 2006, 26: 3677–3684

Chang L, Chai S X. Application of AMM I model in the stability analysis of spring wheat in rainfed area. Acta Ecol Sin, 2006, 26: 3677–3684 (in Chinese with English abstract)

[17]刘文江,李浩杰, 汪旭东, 周开达. 用AMMI模型分析杂交水稻基本性状的稳定性. 作物学报, 2002, 28: 569–573

Liu W J, Li H J, Wang X D, Zhou K D. Stability analysis for elementary characters of hybrid rice by AMMI model. Acta Agon Sin, 2002, 28: 569–573 (in Chinese with English abstract)

[18]刘旭云, 谢永俊, 杨德, 张锡顺. AMMI模型应用于油菜区域试验的分析研究. 西南农业学报, 2001, 14(2): 27–30

Liu X Y, Xie Y J, Yang D, Zhang X S. Analysis and research of AMMI model for rape varieties regional trials. Southwest China J Agric Sci, 2001, 14(2): 27–30 (in Chinese with English abstract)

[19]罗俊, 袁照年, 张华, 陈由强, 陈如凯.宿根甘蔗产量性状的稳定性分析. 应用与环境生物学报, 2009, 15: 488–494

Luo J, Yuan Z N, Zhang H, Chen Y Q, Chen R K. Stability analysis on yield characters of sugarcane ratoon. Chin J Appl Environ Biol, 2009, 15: 488–494 (in Chinese with English abstract)

[20]Gauch H G Jr, Piepho H P, Annicchiarico P. Statistical analysis of yield trials by AMMI and GGE: further considerations. Crop Sci, 2008, 48: 866?889

[21]Yan W, Kang M S, Ma B L, Woods S, Cornelius P L. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci, 2007, 47: 643?655

[22]严威凯, 盛庆来, 胡跃高, Hun L A. GGE叠图法-分析品种×环境互作模式的理想方法. 作物学报, 2001, 27: 21–27

Yan W K, Sheng Q L, Hu Y G, Hun L A. GGE biplot: all ideal tool for studying genotype by environment interaction of regional yield trial data. Acta Agon Sin, 2001, 27: 21–27 (in Chinese with English abstract)

[23]Yan W, Hunt L A, Sheng Q L, Szlavnics Z. Cultivar evaluation and mega-environment investigation based on GGE biplot. Crop Sci, 2000, 40: 596?605

[24]Yan W, Holland J B. A heritability-adjusted GGE biplot for test environment evaluation. Euphytica, 2010, 171: 355–369

[25]张志芬, 付晓峰, 刘俊青, 杨海顺. 用GGE双标图分析燕麦区域试验品系产量稳定性及试点代表性. 作物学报, 2010, 36: 1377–1385

Zhang Z F, Fu X F, Liu J Q, Yang H S. Yield stability and testing-site representativeness in national regional trials for oat variety based on GGE-biplot analysis. Acta Agon Sin, 2010, 36: 1377–1385 (in Chinese with English abstract)

[26]陈四龙, 李玉荣, 程增书, 刘吉生. 用GGE双标图分析种植密度对高油花生生长和产量的影响. 作物学报, 2009, 35: 1328–1335

Chen S L, Li Y R, Cheng Z S, Liu J S. GGE-biplot analysis of effects of planting density n growth and yield components of high oil peanut. Acta Agon Sin, 2009, 35: 1328–1335 (in Chinese with English abstract)

[27]尚毅, 李少钦, 李殿荣. 用双标图分析油菜双列杂交试验. 作物学报, 2006, 32: 243?248

Shang Y, Li S Q, Li D R. GGE biplot analysis of diallelcross of B. napus L. Acta Agon Sin, 2006, 32: 243?248 (in Chinese with English abstract)

[28]周长军, 田中艳, 李建英. 双标图法分析大豆多点试验中品系产量稳定性及试点代表性. 大豆科学, 2011, 30: 318?322

Zhou C J, Tian Z Y, Li J Y. GGE-biplot analysis on yield stability and testing-site representativeness of soybean lines in multi-environment trials. Soybean Sci, 2011, 30: 318?322 (in Chinese with English abstract)

[29]常磊, 柴守玺. GGE双标图在我国旱地春小麦稳产性分析中的应用. 中国生态农业学报, 2010, 18: 988?994

Chang L, Chai S X. Application of GGE biplot in spring wheat yield stability analysis in rainfed areas of China. Chin J Eco-Agric, 2010, 18: 988?994 (in Chinese with English abstract)

[30]许乃银, 金石桥. 应用GGE双标图筛选理想棉花区域试验点. 江西棉花, 2010, 32(3): 7?12

Xu N Y, Jin S Q. Identifying discriminating and representative locations in cotton regional trials using GGE biplot. Jiangxi Cotton, 2010, 32(3): 7?12 (in Chinese with English abstract)

[31]孙敏, 蒋文敏, 李慧英, 刘壮. 应用GGE双标图进行向日葵杂交种产量稳定性分析. 黑龙江农业科学, 2010, (9): 11?13

Sun M, Jiang W M, Li H Y, Liu Z. Analysis of stable-production character by GGE biplot on sunflower hybrids. Heilongjiang Agric Sci, 2010, (9): 11?13 (in Chinese with English abstract)

[32]Tang Q Y, Zhang C X, Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci, 2013, 20: 254?260

[33]唐启义, 冯明光. DPS数据处理系统----实验设计、统计分析及数据挖掘. 北京: 科学出版社, 2010

Tang Q Y, Feng M G. DPS Data Processing System: experimental design, statistical analysis, and data mining. Beijing: Science Press, 2010

[34]金石桥, 许乃银. GGE双标图在中国农作物品种试验中应用的必要性探讨. 种子, 2012, 31(12): 89?92

Jin S Q, Xu N Y. The discuss of necessity about GGE double labeling chart applied in crop variety experiment in china. Seed, 2012, 31(12): 89?92 (in Chinese with English abstract)

[35]Luo J, Pan Y B, Xu L P, Zhang H, Yuan Z N, Deng Z H, Chen R K, Que Y X. Cultivar evaluation and essential test locations identification for sugarcane breeding in China. Sci World J, 2014, http://dx.doi.org/10.1155/2014/302753

[36]Luo J, Que Y X, Zhang H, Xu L P. Seasonal variation of the canopy structure parameters and its correlation with yield-related traits in sugarcane. Sci World J , 2013, http://dx.doi.org/10.1155/2013/801486

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[12] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[13] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!