欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (02): 228-239.doi: 10.3724/SP.J.1006.2015.00228

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

枯萎病菌诱导感、抗陆地棉品种的转录因子表达变化

韩泽刚1,赵曾强1,何兰兰1,柴蒙亮2,李会会1,张薇1,*   

  1. 1 石河子大学农学院, 新疆石河子 832000; 2 石河子大学生命科学学院, 新疆石河子 832000
  • 收稿日期:2014-05-27 修回日期:2014-09-30 出版日期:2015-02-12 网络出版日期:2014-11-11
  • 通讯作者: 张薇, E-mail: zhw_agr@shzu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31260358)和国家转基因生物新品种培育重大专项(2011ZX08005-005)资助。

Expression Changes of Transcription Factors in Susceptible and Resistant Upland Cotton Cultivars (Gossypium hirsutum L.) in Response to Fusarium wilt

HAN Ze-Gang1,ZHAO Zeng-Qiang1,HE Lan-Lan1,CHAI Meng-Liang2,LI Hui-Hui1,ZHANG Wei1,*   

  1. 1 Agricultural College, Shihezi University, Shihezi 832000, China; 2 College of Life Sciences, Shihezi University, Shihezi 832000, China
  • Received:2014-05-27 Revised:2014-09-30 Published:2015-02-12 Published online:2014-11-11
  • Contact: 张薇, E-mail: zhw_agr@shzu.edu.cn

摘要:

以陆地棉抗病品种中棉所12和感病品种新陆早7号为材料, 利用Solexa高通量测序技术调查枯萎病菌诱导后不同时间感、抗陆地棉品种转录因子家族及转录因子的表达情况。结果表明, 枯萎病菌诱导后, 抗病品种中棉所12有39个转录因子家族的433个转录因子在至少一个比对组中表达活性发生变化; 感病品种新陆早7号则有52个转录因子家族的588个转录因子在至少一个比对组中表达活性发生变化。新陆早7号对枯萎病菌响应的转录因子及转录因子家族的数目明显多于中棉所12, 且2个品种的下调基因数目均多于上调基因。随着枯萎病菌诱导后时间延长, 两品种对枯萎病菌诱导响应的转录因子家族及转录因子数量均呈现先增加后降低的变化趋势, 中棉所12在枯萎病菌诱导后的6 h达最多, 而新陆早7号在诱导后的3 h达最多。在6个比对组中表达活性均发生变化的重叠转录因子, 中棉所12中有9个, 隶属于6个转录因子家族; 新陆早7号中有31个, 隶属于17个转录因子家族。不同抗病性品种对枯萎病的响应有较强的品种特异性, 除37个共有的转录因子家族外, 2个转录因子家族是中棉所12所特有, 15个转录因子家族是新陆早7号所特有。

关键词: 陆地棉, 枯萎病, Solexa测序, 转录因子

Abstract:

The Solexa sequencing was used to study the expression changes of transcription factors and their families in upland cotton cultivars susceptible and resistant to Fusarium wilt. A total of 39 transcription factor families and 433 transcription factors in Zhongmiansuo 12 and 58 transcription factor families and 588 transcription factors in Xinluzao 7 were changed in expression in at least one comparison group induced by Fusarium wilt. The number of transcription factor families responsed to Fusarium wilt was more in Xinluzao 7 than in Zhongmiansuo 12, and the number of down-regulated genes was more than that of up-regulated genes in two varieties. After the induction by Fusarium wilt, in the process of time, the number of transcription factor families and transcription factors responsed to the Fusarium wilt in two cultivars showed the same changing trend of increase first and decrease then. The maximum number was reached after six hours in Zhongmiansuo 12, while at three hours after the inducing in Xinluzao 7. Among six comparison groups, there were nine overlapping transcription factors in six transcription factor families of Zhongmiansuo 12 and Zhongmiansuo 31 overlapping transcription factors in 17 transcription factor families of Xinluzao 7. The expression of transcription factor showed strong cultivar specificity among varieties tolerant to Fusarium wilt. Except for 37 transcription factor families shared between two cultivars, two transcription factor families were unique to Zhongmiansuo 12 and Zhongmiansuo 15 transcription factor families were unique to Xinluzao 7.

Key words: Upland cotton, Fusarium wilt, Solexa sequencing, Transcription factor

[1]吴征彬, 杨业华, 刘小丰, 王强. 枯萎病对棉花产量和纤维品质的影响. 棉花学报, 2004, 16: 236–239



Wu Z B, Yang Y H, Liu X F, Wang Q. Effect of Fusarium wilt on the cotton yield and fiber quality. Cotton Sci, 2004, 16: 236–239 (in Chinese with English abstract)



[2]徐秋华, 张献龙, 聂以春, 冯纯大. 我国棉花抗枯萎病品种的遗传多样性分析. 中国农业科学, 2002, 35: 272–276



Xu Q H, Zhang X L, Nie Y C, Feng C D. Genetic diversity evaluation of cultivars (G. hirsumtum L.) resistant to Fusarium wilt by RAPD markers. Sci Agric Sin, 2002, 35: 272–276 (in Chinese with English abstract)



[3]金慧, 栾雨时. 转录因子在植物抗病基因工程中的研究进展. 中国生物工程杂志, 2010, 30 (10): 94–99



Jin H, Luan Y S. Progress of transcription factor in gene engineering of diseases resistances in plant. Chin Biotechnol, 2010, 30 (10): 94–99 (in Chinese with English abstract)



[4]赵明辉, 马殿荣, 王嘉宇, 徐海, 唐亮, 陈温福. 低氮胁迫下水稻剑叶转录因子表达变化. 中国水稻科学, 2012, 26: 275–282



Zhao M H, Ma D R, Wang J Y, Xu H, Tang L, Chen W F. Expression of transcription factors of rice flag leaf under low nitrogen stress. Chin J Rice Sci, 2012, 26: 275–282 (in Chinese with English abstract)



[5]马廷臣, 余蓉蓉, 陈荣军, 曾汉来, 张端品. 全基因组表达分析不同强度干旱胁迫下常规籼稻根系转录因子表达变化. 核农学报, 2013, 27: 1258–1269



Ma T C, Yu R R, Chen R J, Zeng H L, Zhang D P. Global genome expression change of transcription factors in conventional indica rice roots under different drought stress. Acta Agric Nucl Sin, 2013, 27: 1258–1269 (in Chinese with English abstract)



[6]马廷臣, 陈荣军, 余蓉蓉, 曾汉来, 张端品. 全基因组分析PEG胁迫下水稻根系转录因子表达变化. 作物学报, 2009, 35: 1030–1037



Ma T C, Chen R J, Yu R R, Zeng H L, Zhang D P. Global genome expression analysis of transcription factors under PEG osmotic stress in rice root system. Acta Agron Sin, 2009, 35: 1030–1037 (in Chinese with English abstract)



[7]王曦, 汪小我, 王立坤, 冯智星, 张学工. 新一代高通量RNA测序数据的处理与分析. 生物化学与生物物理进展, 2010, 37: 834–846



Wang X, Wang X W, Wang L K, Feng Z X, Zhang X G. Processing and analysis of a new generation of high throughput RNA sequencing data. Prog Biochem Biophysics, 2010, 37: 834–846 (in Chinese with English abstract)



[8]谢为博. 基于表达谱芯片和新一代测序技术的高通量基因分型方法的开发. 华中农业大学博士学位论文, 湖北武汉, 2010. pp 17–18



Xie W B. Development of High Throughput Genotyping Methods Based on DNA Microarray and New Generation Sequencing Technologies. PhD Dissertation of Huazhong Agricultural University, Wuhan, China, 2010. pp 17–18 (in Chinese with English abstract)



[9]魏利斌, 苗红梅, 张海洋. 芝麻发育转录组分析. 中国农业科学, 2012, 45: 1246–1256



Wei L B, Miao H M, Zhang H Y. Transcriptomic analysis of sesame development. Sci Agric Sin, 2012, 45: 1246–1256 (in Chinese with English abstract)



[10]宋雯雯, 李文滨, 韩雪, 高慕娟, 王继安. 干旱胁迫下大豆幼苗根系基因的表达谱分析. 中国农业科学, 2010, 43: 579–4586



Song W W, Li W B, Han X, Gao M J, Wang J A. Analysis of gene expression profiles in soybean roots under drought stress. Sci Agric Sin, 2010, 43: 4579–4586  (in Chinese with English abstract)



[11]孙爱清, 张杰道, 万勇善, 刘风珍, 张昆, 孙利. 花生干旱胁迫响应基因的数字表达谱分析. 作物学报, 2013, 39: 1045–1053



Sun A Q, Zhang J D, Wan Y S, Liu F Z, Zhang K, Sun L. In silico expression profile of genes in response to drought in peanut. Acta Agron Sin, 2013, 39: 1045–1053 (in Chinese with English abstract)



[12]Wang G, Zhu Q G, Meng Q W, Wu C G. Transcript profiling during salt stress of young cotton (Gossypium hirsutum) seedlings via Solexa sequencing. Acta Physiol Plant, 2012, 34: 107–115



[13]Wu J, Zhang Y L, Zhang H Q, Huang H, Folta K M, Lu J. Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biol, 2010, 10: 234



[14]Yu S C, Zhang F L, Yu Y J, Zhang D S, Zhao X Y, Wang W H. Transcriptome profiling of dehydration stress in the Chinese cabbage (Brassica rapa L. ssp. pekinensis) by tag sequencing. Plant Mol Biol Rep, 2012, 30: 17–28



[15]Pang T, Ye C Y, Xia X L, Yin, W L. De novo sequencing and transcriptome analysis of the desert shrub, Ammopiptanthus mongolicus, during cold acclimation using Illumina/Solexa. BMC Gene, 2013, 14: 488–503



[16]Shan X H , Li Y D, Jiang Y, Jiang Z L, Hao W Y, Yuan. Y P. Transcriptome profile analysis of maize seedlings in response to high-salinity, drought and cold stresses by deep sequencing. Plant Mol Biol Rep, 2013, 31: 1485–1491



[17]Andrew J C, Liu D C, Ramil M, Yue I C H, Rachid S. Transcriptome profiling of leaf elongation zone under drought in contrasting Rice cultivars. PloS One, 2013, 8: e54537



[18]Chen J H, Song Y P, Zhang H, Zhang D Q. Genome-wide analysis of gene expression in response to drought stress in Populus simonii. Plant Mol Biol Rep, 2013, 31: 946–962



[19]Wang Y, Xu L, Chen Y L, Shen H, Gong, Y Q, Cecilia L, Liu L W. Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to lead (Pb) stress with next generation sequencing. PloS One, 2013, 8: e66539



[20]彭姗, 吕学莲, 高峰, 李国英, 李晖. 一种新的棉花黄, 枯萎病快速接种方法的研究. 棉花学报, 2008, 20: 174–178



Peng S, Lv X L, Gao F, Li G Y, Li H. Study on a new rapid inoculation method for Verticillium wilt and Fusarium wilt of cotton. Cotton Sci, 2008, 20: 174–178 (in Chinese with English abstract)



[21]Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Natl Meth, 2008, 5: 621–628



[22]Audic S, Claverie J M. The significance of digital gene expression profiles. Genome Res, 1997, 7: 986–995



[23]Benjamini Y, Drai D, Elmer G, Kafkafid N, Golanib I. Controlling the false discovery rate in behavior genetics research. Behaviour Brain Res, 2001, 125: 279–284



[24]罗红丽, 陈银华. 植物抗病反应相关转录因子的研究进展. 热带生物学报, 2011, 2 (1): 83–88



Luo H L, Chen Y H. Advance on transcription factors involved in plant disease resistance response. Chin J Trop Crops, 2011, 2: 83–88 (in Chinese with English abstract)



[25]Zhang Y, Zhang G, Xia N, Wang X J, Huang L L, Kang Z S. Cloning and characterization of a bZIP transcription factor gene in wheat and its expression in response to stripe rust pathogen infection and abiotic stresses. Physiol Mol Plant Pathol, 2008, 73: 88–94



[26]Lee S C, Choi H W, Hwang I S, Choi D S, Hwang B K. Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta, 2006, 224: 1209–1225



[27]秦捷, 王武, 左开井, 唐克轩. AP2基因家族的起源和棉花AP2转录因子在抗病中的作用. 棉花学报, 2006, 17: 366–370



Qin J, Wang W, Zuo K J, Tang K X. Origin of AP2 gene family and cotton AP2 transcription factors roles in plant resistance. Cotton Sci, 2006, 17: 366–370 (in Chinese with English abstract)



[28]何兰兰, 柴蒙亮, 韩泽刚, 赵曾强, 张薇. 棉花抗枯萎病相关ERF-B3亚组转录因子的克隆与表达. 西北植物学报, 2013, 33: 2375–2381



He L L, Chai M L, Han Z G, Zhao Z Q, Zhang W. Cloning and expression of ERF-B3 subgroup transcription factor related to resistance Fusarium wilt in cotton. Acta Bot Boreali-Occident Sin, 2013, 33: 2375–2381 (in Chinese with English abstract)



[29]王磊, 高晓清, 朱苓华, 周永力, 黎志康. 植物WRKY转录因子家族基因抗病相关功能的研究进展. 植物遗传资源学报, 2011, 12: 80–85



Wang L, Gao X Q, Zhu L H, Zhou Y L, Li Z K. Advances in research on function of WRKY transcription factor genes in plant resistance. J Plant Genet Res, 2011, 12: 80–85 (in Chinese with English abstract)



[30]王瑞, 吴华玲, 王会芳, 黄珂, 霍春艳, 倪中福, 孙其信. 小麦TaWRKY44基因的克隆、表达分析及功能鉴定. 作物学报, 2013, 39: 1944–1951



Wang R, Wu H L, Wang H F, Huang K, Huo C Y, Ni Z F, Sun Q X. Cloning, characterization, and functional analysis of TaWRKY44 gene from wheat. Acta Agron Sin, 2013, 39: 1944–1951 (in Chinese with English abstract)



[31]Chen C, Chen Z. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol, 2002, 129: 706–716



[32]Zhang Z L, Xie Z, Zou X L, Casaretto J, Ho T H D, Shen Q X J. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol, 2004, 134: 1500–1513



[33]Xu Y H, Wang J W, Wang S, Wang J Y, Chen X Y. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene-delta-cadinene sythase-A. Plant Physiol, 2004, 135: 507–515



[34]Luo H, Song F, Goodman R M, Zheng Z. Up-regulation of OsBIHD1, a rice gene encoding BELL homeodomain transcriptional factor, in disease resistance responses. Plant Biol, 2005, 7: 459–468



[35]Luo H, Song F, Zheng Z. Overexpression in transgenic tobacco reveals different roles for the rice homeodomain gene OsBIHD1 in biotic and abiotic stress responses. J Exp Bot, 2005, 56: 2673–2682



[36]Coego A, Ramirez V, Gil M J, Florsb V, Manic B M, Veraa P. An Arabidopsis homeodomain transcription factor, OVEREXPRESSOR OF CATIONIC PEROXIDASE 3, mediates resistance to infection by necrotrophic pathogens. Plant Cell, 2005, 17: 2123–2137



[37]邢国芳, 张雁明, 张魏斌, 马新耀, 韩渊怀. 植物NAC转录因子的研究进展. 山西农业科学, 2012, 40: 409–411



Xing G F, Zhang Y M, Zhang W B, Ma X Y, Han Y H.Research progress of NAC transcription factor in plant. J Shanxi Agric Sci, 2012, 40: 409–411 (in Chinese with English abstract)



[38]李方正, 杨素欣, 吴春霞, 魏海超, 曲瑞莲, 冯献忠. 大豆KNOX基因家族的结构和表达分析. 植物学报, 2012, 47: 236–247



Li W Z, Yang S X, Wu Q X, Wei H C, Qu R L, Feng X Z. Structure and expression analysis of KNOX gene family in soybean. Chin Bull Bot, 2012, 47: 236–247 (in Chinese with English abstract)



[39]刘晓月, 王文生, 傅彬英. 植物bHLH转录因子家族的功能研究进展. 生物技术进展, 2012, (1): 391–397



Liu X Y, Wang W S, Fu B Y. Research progress of plant bHLH transcription factor family. Curr Biotechnol, 2012, (1): 391–397 (in Chinese with English abstract)

[1] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[2] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[3] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[4] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[5] 葛敏, 王元琮, 宁丽华, 胡梦梅, 石习, 赵涵. 氮响应转录因子ZmNLP5影响玉米根系生长的功能研究[J]. 作物学报, 2021, 47(5): 807-813.
[6] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[7] 杨梦婷, 张春, 王作平, 邹华文, 吴忠义. 玉米ZmbHLH161基因的克隆及功能研究[J]. 作物学报, 2020, 46(12): 2008-2016.
[8] 张欢, 杨乃科, 商丽丽, 高晓茹, 刘庆昌, 翟红, 高少培, 何绍贞. 甘薯抗旱相关基因IbNAC72的克隆与功能分析[J]. 作物学报, 2020, 46(11): 1649-1658.
[9] 晁毛妮,胡海燕,王润豪,陈煜,付丽娜,刘庆庆,王清连. 陆地棉钾转运体基因GhHAK5启动子的克隆与功能分析[J]. 作物学报, 2020, 46(01): 40-51.
[10] 殷龙飞,王朝阳,吴忠义,张中保,于荣. 玉米ZmGRAS31基因的克隆及功能研究[J]. 作物学报, 2019, 45(7): 1029-1037.
[11] 张晓红,胡根海,王寒涛,王聪聪,魏恒玲,付远志,喻树迅. 棉花中GhTFL1aGhTFL1c基因的表达及启动子分析[J]. 作物学报, 2019, 45(3): 469-476.
[12] 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203.
[13] 赵晶,李旭彤,梁学忠,王志城,崔静,陈斌,吴立强,王省芬,张桂寅,马峙英,张艳. 陆地棉漆酶基因家族鉴定及在黄萎病菌胁迫下的表达分析 *[J]. 作物学报, 2019, 45(12): 1784-1795.
[14] 时丕彪,何冰,费月跃,王军,王伟义,魏福友,吕远大,顾闽峰. 藜麦GRF转录因子家族的鉴定及表达分析[J]. 作物学报, 2019, 45(12): 1841-1850.
[15] 张宏娟,李玉莹,苗丽丽,王景一,李超男,杨德龙,毛新国,景蕊莲. 小麦转录因子基因TaNAC67参与调控穗长和每穗小穗数[J]. 作物学报, 2019, 45(11): 1615-1627.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!